All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 6468 by Temp last updated on 28/Jun/16
I(t)=∫0teiπxx−xdx,t∈Z
Commented by Temp last updated on 28/Jun/16
I(t)=∫0teiπxe−xlnxdxI(t)=∫0tex(iπ−lnx)dxI(t)=∫0texi(π+ilnx)dxI(t)=∫0t(cosx+isinx)(π+ilnx)dx
I(t)=∫0teix(π+ilnx)dxμ=π+ilnx∴x=e−i(μ−π)⇒dx=ie−i(μ−π)dμ∴I(t)=∫−i∞π+ilnteiμe−i(μ−π)ie−i(μ−π)dμI(t)=∫−i∞π+ilntieiμe−i(μ−π)−i(μ−π)dμI(t)=∫−i∞π+ilntiei(μe−i(μ−π)−(μ−π))dμI(t)=∫−i∞π+ilnti(cos(μe−i(μ−π)−(μ−π))+isin(μe−i(μ−π)−(μ−π)))dμI(t)=∫−i∞π+ilnticos(μe−i(μ−π)−μ+π)dμ−∫−i∞π+ilntsin(μe−i(μ−π)−μ+π)dμe−i(μ−π)=−e−iμI(t)=∫−i∞π+ilnticos(−μe−iμ−μ+π)dμ−∫−i∞π+ilntsin(−μe−iμ−μ+π)dμPleasecontinue
Terms of Service
Privacy Policy
Contact: info@tinkutara.com