Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 64686 by ajfour last updated on 20/Jul/19

Answered by ajfour last updated on 20/Jul/19

Let B be origin  and x axis along  BC.  x^2 +y^2 =c^2   (x−a)^2 +y^2 =b^2   ⇒  a(2x−a)=c^2 −b^2   x=((a^2 +c^2 −b^2 )/(2a))  y=(√(c^2 −(((a^2 +c^2 −b^2 )/(2a)))^2 ))  △^2 =((a^2 y^2 )/4) = (a^2 /4)[(((2ac−a^2 −c^2 +b^2 )(2ac+a^2 +c^2 −b^2 )/(4a^2 ))]      =(([b^2 −(a−c)^2 ][(a+c)^2 −b^2 ])/(16))  ⇒ 16△^2 =−(a^2 −c^2 )^2 −b^4 +2b^2 (a^2 +c^2 )       = −a^4 −b^4 −c^4 +2(a^2 c^2 +b^2 c^2 +c^2 a^2 )       =2Σa^2 b^2 −Σa^4        =4Σa^2 b^2 −(Σa^2 )^2        =4Σa^2 b^2 −[(a+b+c)^2 −2Σab]^2        =4Σa^2 b^2 −[16s^4 −16s^2 Σab+4(Σab)^2 ]       =−16s^4 +16s^2 Σab−16(abc)s  ⇒ △=(√(s^2 Σab−s^4 −(abc)s))   △=(√(s[s(ab+bc+ca)−s^3 −abc]))       =(√(s[s(ab+bc+ca)+s^3 −s(a+b+c)−abc))  ⇒   __________________________    △=(√(s(s−a)(s−b)(s−c)))    __________________________

$${Let}\:{B}\:{be}\:{origin}\:\:{and}\:{x}\:{axis}\:{along} \\ $$$${BC}. \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$$\left({x}−{a}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{a}\left(\mathrm{2}{x}−{a}\right)={c}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$${x}=\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{a}} \\ $$$${y}=\sqrt{{c}^{\mathrm{2}} −\left(\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}{a}}\right)^{\mathrm{2}} } \\ $$$$\bigtriangleup^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} {y}^{\mathrm{2}} }{\mathrm{4}}\:=\:\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\left[\frac{\left(\mathrm{2}{ac}−{a}^{\mathrm{2}} −{c}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left(\mathrm{2}{ac}+{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right.}{\mathrm{4}{a}^{\mathrm{2}} }\right] \\ $$$$\:\:\:\:=\frac{\left[{b}^{\mathrm{2}} −\left({a}−{c}\right)^{\mathrm{2}} \right]\left[\left({a}+{c}\right)^{\mathrm{2}} −{b}^{\mathrm{2}} \right]}{\mathrm{16}} \\ $$$$\Rightarrow\:\mathrm{16}\bigtriangleup^{\mathrm{2}} =−\left({a}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)^{\mathrm{2}} −{b}^{\mathrm{4}} +\mathrm{2}{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:=\:−{a}^{\mathrm{4}} −{b}^{\mathrm{4}} −{c}^{\mathrm{4}} +\mathrm{2}\left({a}^{\mathrm{2}} {c}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:=\mathrm{2}\Sigma{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\Sigma{a}^{\mathrm{4}} \\ $$$$\:\:\:\:\:=\mathrm{4}\Sigma{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\left(\Sigma{a}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:=\mathrm{4}\Sigma{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\left[\left({a}+{b}+{c}\right)^{\mathrm{2}} −\mathrm{2}\Sigma{ab}\right]^{\mathrm{2}} \\ $$$$\:\:\:\:\:=\mathrm{4}\Sigma{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\left[\mathrm{16}{s}^{\mathrm{4}} −\mathrm{16}{s}^{\mathrm{2}} \Sigma{ab}+\mathrm{4}\left(\Sigma{ab}\right)^{\mathrm{2}} \right] \\ $$$$\:\:\:\:\:=−\mathrm{16}{s}^{\mathrm{4}} +\mathrm{16}{s}^{\mathrm{2}} \Sigma{ab}−\mathrm{16}\left({abc}\right){s} \\ $$$$\Rightarrow\:\bigtriangleup=\sqrt{{s}^{\mathrm{2}} \Sigma{ab}−{s}^{\mathrm{4}} −\left({abc}\right){s}} \\ $$$$\:\bigtriangleup=\sqrt{{s}\left[{s}\left({ab}+{bc}+{ca}\right)−{s}^{\mathrm{3}} −{abc}\right]} \\ $$$$\:\:\:\:\:=\sqrt{{s}\left[{s}\left({ab}+{bc}+{ca}\right)+{s}^{\mathrm{3}} −{s}\left({a}+{b}+{c}\right)−{abc}\right.} \\ $$$$\Rightarrow \\ $$$$\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:\:\bigtriangleup=\sqrt{\boldsymbol{{s}}\left(\boldsymbol{{s}}−\boldsymbol{{a}}\right)\left(\boldsymbol{{s}}−\boldsymbol{{b}}\right)\left(\boldsymbol{{s}}−\boldsymbol{{c}}\right)}\: \\ $$$$\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$

Commented by mr W last updated on 20/Jul/19

what′s the question sir?

$${what}'{s}\:{the}\:{question}\:{sir}? \\ $$

Commented by ajfour last updated on 20/Jul/19

Nothing Sir, just whiling away  my time.  (^⌢_•  ∣^(  ⌢_• ) _⌣ ∂

$${Nothing}\:{Sir},\:{just}\:{whiling}\:{away} \\ $$$${my}\:{time}.\:\:\left(^{\underset{\bullet} {\frown}} \underset{\smile} {\shortmid}^{\:\:\underset{\bullet} {\frown}} \partial\right. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com