Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 64709 by ajfour last updated on 20/Jul/19

Commented by ajfour last updated on 20/Jul/19

If regions A and B have the same  area, and both parabolas have  the same shape but their axis ⊥ to  each other, then determine  the equation of the red parabola.

IfregionsAandBhavethesamearea,andbothparabolashavethesameshapebuttheiraxistoeachother,thendeterminetheequationoftheredparabola.

Answered by mr W last updated on 22/Jul/19

say both touch at point P(−h,h^2 )  y=x^2   (dy/dx)=2x  eqn. of red parabola:  x=−s+(y−t)^2   ⇒y=t±(√(x+s))  (dx/dy)=2(y−t) ⇒(dy/dx)=(1/(2(y−t)))    at point P:  −h=−s+(h^2 −t)^2   m=−2h=(1/(2(h^2 −t)))  ⇒t=h^2 +(1/(4h))  ⇒s=h+(1/(16h^2 ))    intersection of parabolas:  x=−s+(x^2 −t)^2   ⇒x^4 −2tx^2 −x+t^2 −s=0  ⇒x^4 −(2h^2 +(1/(2h)))x^2 −x+(h^4 −(h/2))=0  (x+h)^2 (x^2 +qx+r)=0  (x^2 +2hx+h^2 )(x^2 +qx+r)=0  x^4 +(2h+q)x^3 +(h^2 +r+2hq)x^2 +(h^2 q+2hr)x+h^2 r=0  ⇒2h+q=0⇒q=−2h  ⇒h^2 +r+2hq=−2h^2 −(1/(2h))  ⇒h^2 q+2hr=−1  ⇒h^2 r=h^4 −(h/2)⇒r=h^2 −(1/(2h))  h^2 +r+2hq=h^2 +h^2 −(1/(2h))−4h^2 =−2h^2 −(1/(2h))⇒ok   h^2 q+2hr=−2h^3 +2h(h^2 −(1/(2h)))=−1⇒ok  ⇒x^2 −2hx+h^2 −(1/(2h))=0  ⇒x=h±(√(h^2 −(h^2 −(1/(2h)))))=h±(1/(√(2h)))    A=∫_(−h) ^(h−(1/(√(2h)))) [t−(√(x+s))−x^2 ]dx  =[tx−(2/3)(x+s)^(3/2) −(1/3)x^3 ]_(−h) ^(h−(1/(√(2h))))   =(h^2 +(1/(4h)))(2h−(1/(√(2h))))−(2/3)(h−(1/(√(2h)))+h+(1/(16h^2 )))^(3/2) +(2/3)(−h+h+(1/(16h^2 )))^(3/2) −(1/3)(h−(1/(√(2h))))^3 −(1/3)h^3   =(h^2 +(1/(4h)))(2h−(1/(√(2h))))−(2/3)(2h−(1/(√(2h)))+(1/(16h^2 )))^(3/2) +(2/3)((1/(16h^2 )))^(3/2) −(1/3)(h−(1/(√(2h))))^3 −(1/3)h^3     A+B=∫_(−h) ^(h+(1/(√(2h)))) [t+(√(x+s))−x^2 ]dx+∫_(−s) ^(−h) 2(√(x+s))dx  =[tx+(2/3)(x+s)^(3/2) −(1/3)x^3 ]_(−h) ^(h+(1/(√(2h)))) +(4/3)[(x+s)^(3/2) ]_(−s) ^(−h)   =(h^2 +(1/(4h)))(2h+(1/(√(2h))))+(2/3)(h+(1/(√(2h)))+h+(1/(16h^2 )))^(3/2) −(2/3)(−h+h+(1/(16h^2 )))^(3/2) −(1/3)(h+(1/(√(2h))))^3 −(1/3)h^3 +(4/3)((1/(16h^2 )))^(3/2)   =(h^2 +(1/(4h)))(2h+(1/(√(2h))))+(2/3)(2h+(1/(√(2h)))+(1/(16h^2 )))^(3/2) −(2/3)((1/(16h^2 )))^(3/2) −(1/3)(h+(1/(√(2h))))^3 −(1/3)h^3 +(4/3)((1/(16h^2 )))^(3/2)     A+B=2A  (h^2 +(1/(4h)))(2h+(1/(√(2h))))+(2/3)(2h+(1/(√(2h)))+(1/(16h^2 )))^(3/2) −(2/3)((1/(16h^2 )))^(3/2) −(1/3)(h+(1/(√(2h))))^3 −(1/3)h^3 +(4/3)((1/(16h^2 )))^(3/2) =2(h^2 +(1/(4h)))(2h−(1/(√(2h))))−(4/3)(2h−(1/(√(2h)))+(1/(16h^2 )))^(3/2) +(4/3)((1/(16h^2 )))^(3/2) −(2/3)(h−(1/(√(2h))))^3 −(2/3)h^3   ⇒(h^2 +(1/(4h)))((3/(√(2h)))−2h)+(2/3)(2h+(1/(√(2h)))+(1/(16h^2 )))^(3/2) +(4/3)(2h−(1/(√(2h)))+(1/(16h^2 )))^(3/2) −(2/3)((1/(16h^2 )))^(3/2) −(1/3)(h+(1/(√(2h))))^3 +(2/3)(h−(1/(√(2h))))^3 +(1/3)h^3 =0  ⇒h=2.55781774 ⇒h^2 =6.542431  eqn. of red parabola:  ⇒x=−h−(1/(16h^2 ))+(y−h^2 −(1/(4h)))^2   i.e. x=−2.5673708+(y−6.6401712)^2   or x=y^2 −13.280342y+41.524503

saybothtouchatpointP(h,h2)y=x2dydx=2xeqn.ofredparabola:x=s+(yt)2y=t±x+sdxdy=2(yt)dydx=12(yt)atpointP:h=s+(h2t)2m=2h=12(h2t)t=h2+14hs=h+116h2intersectionofparabolas:x=s+(x2t)2x42tx2x+t2s=0x4(2h2+12h)x2x+(h4h2)=0(x+h)2(x2+qx+r)=0(x2+2hx+h2)(x2+qx+r)=0x4+(2h+q)x3+(h2+r+2hq)x2+(h2q+2hr)x+h2r=02h+q=0q=2hh2+r+2hq=2h212hh2q+2hr=1h2r=h4h2r=h212hh2+r+2hq=h2+h212h4h2=2h212hokh2q+2hr=2h3+2h(h212h)=1okx22hx+h212h=0x=h±h2(h212h)=h±12hA=hh12h[tx+sx2]dx=[tx23(x+s)3213x3]hh12h=(h2+14h)(2h12h)23(h12h+h+116h2)32+23(h+h+116h2)3213(h12h)313h3=(h2+14h)(2h12h)23(2h12h+116h2)32+23(116h2)3213(h12h)313h3A+B=hh+12h[t+x+sx2]dx+sh2x+sdx=[tx+23(x+s)3213x3]hh+12h+43[(x+s)32]sh=(h2+14h)(2h+12h)+23(h+12h+h+116h2)3223(h+h+116h2)3213(h+12h)313h3+43(116h2)32=(h2+14h)(2h+12h)+23(2h+12h+116h2)3223(116h2)3213(h+12h)313h3+43(116h2)32A+B=2A(h2+14h)(2h+12h)+23(2h+12h+116h2)3223(116h2)3213(h+12h)313h3+43(116h2)32=2(h2+14h)(2h12h)43(2h12h+116h2)32+43(116h2)3223(h12h)323h3(h2+14h)(32h2h)+23(2h+12h+116h2)32+43(2h12h+116h2)3223(116h2)3213(h+12h)3+23(h12h)3+13h3=0h=2.55781774h2=6.542431eqn.ofredparabola:x=h116h2+(yh214h)2i.e.x=2.5673708+(y6.6401712)2orx=y213.280342y+41.524503

Commented by MJS last updated on 21/Jul/19

the method is good but I think there′s an  error somewhere. the equation for h seems  to have no solution

themethodisgoodbutIthinktheresanerrorsomewhere.theequationforhseemstohavenosolution

Commented by MJS last updated on 21/Jul/19

I tried it similar but mirrored at y=x  parabola 1: y^2 =x  parabola 2: y=(x−p)^2 −q  I put the tangential point as  ((α),((−(√α))) )  this leads to (α)^(1/4)  in some terms so I put α=β^4   I get these equations:  parabola 1: y=±(√x)  parabola 2: y=x^2 −((4β^6 +1)/(2β^2 ))x+((β^2 (2β^6 −1))/2)  I get these points of interest:  P_1 = (((β^4 −(√2)β+(1/(2β^2 )))),((β^2 −((√2)/(2β)))) )  [1^(st)  intersection]  P_2 = (((((4β^6 +1)/(4β^2 ))−((√(16β^6 +1))/(4β^2 )))),(0) )  [1^(st)  zero]  P_3 = ((β^4 ),((−β^2 )) )  [2^(nd)  intersection]  P_4 = (((((4β^6 +1)/(4β^2 ))+((√(16β^6 +1))/(4β^2 )))),(0) )  [2^(nd)  zero]  P_5 = (((β^4 +(√2)β+(1/(2β^2 )))),((β^2 +((√2)/(2β)))) )  [3^(rd)  intersection]  the equation of the integrals then leads to  β^(12) −3(√2)β^9 +(3/4)β^6 −((3(√2))/8)β^3 +(1/(64))=0  [ignoring an absolute value ⇒ β≥(1/(2)^(1/6) )≈.890899 ⇒ α≥(1/(4)^(1/3) )≈.629961]  β=(t)^(1/3) ; β≥(1/(2)^(1/6) )>0∧t≥(1/(√2))>0  t^4 −3(√2)t^3 +(3/4)t^2 −((3(√2))/8)t+(1/(64))=0  I solved this with my usual method putting  (t−a−(√b))(t−a+(√b))(t−c−(√d))(t−c+(√d))=0  and got  a=−1+((3(√2))/4)  b=2−((3(√2))/2)  c=1+((3(√2))/4)  d=2+((3(√2))/2)  t∈R∧t≥(1/(√2)) ⇒ t=1+((3(√2))/4)+((√(8+6(√2)))/2)  ⇒ β=(t)^(1/3)  ⇒ α=(t^4 )^(1/3)   β=((1+((3(√2))/4)+((√(8+6(√2)))/2)))^(1/3) ≈1.59932  α=((((4481)/(64))+((99(√2))/2)+((3(65+46(√2))(√(4+3(√2))))/8)))^(1/3) ≈6.54243  parabola 2: y=x^2 −13.2803x+41.5245

Itrieditsimilarbutmirroredaty=xparabola1:y2=xparabola2:y=(xp)2qIputthetangentialpointas(αα)thisleadstoα4insometermssoIputα=β4Igettheseequations:parabola1:y=±xparabola2:y=x24β6+12β2x+β2(2β61)2Igetthesepointsofinterest:P1=(β42β+12β2β222β)[1stintersection]P2=(4β6+14β216β6+14β20)[1stzero]P3=(β4β2)[2ndintersection]P4=(4β6+14β2+16β6+14β20)[2ndzero]P5=(β4+2β+12β2β2+22β)[3rdintersection]theequationoftheintegralsthenleadstoβ1232β9+34β6328β3+164=0[ignoringanabsolutevalueβ126.890899α143.629961]β=t3;β126>0t12>0t432t3+34t2328t+164=0Isolvedthiswithmyusualmethodputting(tab)(ta+b)(tcd)(tc+d)=0andgota=1+324b=2322c=1+324d=2+322tRt12t=1+324+8+622β=t3α=t43β=1+324+8+62231.59932α=448164+9922+3(65+462)4+32836.54243parabola2:y=x213.2803x+41.5245

Commented by mr W last updated on 22/Jul/19

thank you for checking and for the  great solution sir!  i had a mistake in the final equation.  now it should be correct. our solutions  are the same now. i got  h^2 =6.542431  h^2  is α in your working.

thankyouforcheckingandforthegreatsolutionsir!ihadamistakeinthefinalequation.nowitshouldbecorrect.oursolutionsarethesamenow.igoth2=6.542431h2isαinyourworking.

Commented by MJS last updated on 22/Jul/19

(h^2 +(1/(4h)))((3/(√(2h)))−2h)+(2/3)(2h+(1/(√(2h)))+(1/(16h^2 )))^(3/2) +(4/3)(2h−(1/(√(2h)))+(1/(16h^2 )))^(3/2) −(2/3)((1/(16h^2 )))^(3/2) −(1/3)(h+(1/(√(2h))))^3 +(2/3)(h−(1/(√(2h))))^3 +(1/3)h^3 =0  we know h>0  2h+(1/(√(2h)))+(1/(16h^2 ))=(((4(√2)h(√h)+1)/(4h)))^2   2h−(1/(√(2h)))+(1/(16h^2 ))=(((4(√2)h(√h)−1)/(4h)))^2        [believing 4(√2)h(√h)−1>0 ⇒ h>((2)^(1/3) /4)≈.314980]  ⇒ the equation can be transformed to  −((64h^6 −192(√2)h^(9/2) +48h^3 −24(√2)h^(3/2) +1)/(48h^3 ))=0  h^6 −3(√2)h^(9/2) +(3/4)h^3 −((3(√2))/8)h^(3/2) +(1/(64))=0  h=β^2  [β>0]  β^(12) −3(√2)β^9 +(3/4)β^6 −((3(√2))/8)β^3 +(1/(64))=0  ...  it′s the same as my solution

(h2+14h)(32h2h)+23(2h+12h+116h2)32+43(2h12h+116h2)3223(116h2)3213(h+12h)3+23(h12h)3+13h3=0weknowh>02h+12h+116h2=(42hh+14h)22h12h+116h2=(42hh14h)2[believing42hh1>0h>234.314980]theequationcanbetransformedto64h61922h92+48h3242h32+148h3=0h632h92+34h3328h32+164=0h=β2[β>0]β1232β9+34β6328β3+164=0...itsthesameasmysolution

Commented by mr W last updated on 22/Jul/19

ajfour sir:  you are absolutely right! good  observation! i lost a tiny part in the  area B indeed.  i have fixed the result.

ajfoursir:youareabsolutelyright!goodobservation!ilostatinypartintheareaBindeed.ihavefixedtheresult.

Commented by ajfour last updated on 22/Jul/19

Thank you Sir, but MjS Sir′s  answer is perfect. we wont know  how to get the answer in radical  form, from our eq. in h.

ThankyouSir,butMjSSirsanswerisperfect.wewontknowhowtogettheanswerinradicalform,fromoureq.inh.

Commented by ajfour last updated on 22/Jul/19

I salute you sir!

Isaluteyousir!

Commented by mr W last updated on 22/Jul/19

the solution of MJS sir is indeed a  perfect one. even though i knew that  i could transfer my final equation for  h into a polynomial one, but due to  the high power of the eqn. i gave up.  because i wouldn′t be able to solve it.

thesolutionofMJSsirisindeedaperfectone.eventhoughiknewthaticouldtransfermyfinalequationforhintoapolynomialone,butduetothehighpoweroftheeqn.igaveup.becauseiwouldntbeabletosolveit.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com