Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64735 by mmkkmm000m last updated on 20/Jul/19

∫tanθ/1+^− sinθ dθ

$$\int{tan}\theta/\mathrm{1}\overset{−} {+}{sin}\theta\:{d}\theta \\ $$

Commented by mr W last updated on 21/Jul/19

dear sir:  in Q64238 i asked if you could use  a smaller font such that your posts  become better readable for other  people. it seems that you wouldn′t  change this, what a pity! that′s ok,  i don′t care. but i find it very unkind  that you just ignore my kind request  without any reply. i think, being polite  to each other is the foundation of  this forum, otherwise why should  people help other people?

$${dear}\:{sir}: \\ $$$${in}\:{Q}\mathrm{64238}\:{i}\:{asked}\:{if}\:{you}\:{could}\:{use} \\ $$$${a}\:{smaller}\:{font}\:{such}\:{that}\:{your}\:{posts} \\ $$$${become}\:{better}\:{readable}\:{for}\:{other} \\ $$$${people}.\:{it}\:{seems}\:{that}\:{you}\:{wouldn}'{t} \\ $$$${change}\:{this},\:{what}\:{a}\:{pity}!\:{that}'{s}\:{ok}, \\ $$$${i}\:{don}'{t}\:{care}.\:{but}\:{i}\:{find}\:{it}\:{very}\:{unkind} \\ $$$${that}\:{you}\:{just}\:{ignore}\:{my}\:{kind}\:{request} \\ $$$${without}\:{any}\:{reply}.\:{i}\:{think},\:{being}\:{polite} \\ $$$${to}\:{each}\:{other}\:{is}\:{the}\:{foundation}\:{of} \\ $$$${this}\:{forum},\:{otherwise}\:{why}\:{should} \\ $$$${people}\:{help}\:{other}\:{people}? \\ $$

Commented by mathmax by abdo last updated on 21/Jul/19

let  I =∫  ((tanθ)/(1+sinθ)) dθ  changement  tan((θ/2))=t give  I =∫  (((2t)/(1−t^2 ))/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫  ((4tdt)/((1−t^2 )(1+t^2  +2t))) =−∫ ((4t)/((t^2 −1)(t+1)^2 ))dt  =−4∫  ((4t)/((t−1)(t+1)^3 ))dt  let decompose F(t) =(t/((t−1)(t+1)^3 ))  F(t) =(a/(t−1)) +(b/(t+1)) +(c/((t+1)^2 )) +(d/((t+1)^3 ))  a =lim_(x→1) (t−1)F(t) =(1/8)  d =lim_(t→−1) (t+1)^3 F(t) =(1/2) ⇒F(t) =(1/(8(t−1))) +(b/(t+1)) +(c/((t+1)^2 ))+(1/(2(t+1)^3 ))  lim_(t→+∞)  tF(t) =0 =a+b ⇒b =−(1/8) ⇒  F(t) =(1/(8(t−1))) −(1/(8(t+1))) +(c/((t+1)^2 )) +(1/(2(t+1)^3 ))  F(0) =0 =−(1/8)−(1/8) +c +(1/2) =−(1/4)+(1/2) +c =(1/4) +c ⇒c =−(1/4) ⇒  F(t) =(1/(8(t−1))) −(1/(8(t+1)))−(1/(4(t+1)^2 )) +(1/(2(t+1)^3 )) ⇒  ∫ F(t)dt =(1/8)ln∣t−1∣−(1/8)ln∣t+1∣+(1/(4(t+1)))−(1/(4(t+1)^2 )) +C  =(1/8)ln∣((t−1)/(t+1))∣ +(1/(4(t+1)))−(1/(4(t+1)^2 )) +C ⇒  I =−(1/2)ln∣((t−1)/(t+1))∣−(1/((t+1))) +(1/((t+1)^2 )) +C  =−(1/2)ln∣((tan((θ/2))−1)/(tan((θ/2))+1))∣−(1/(1+tan((θ/2)))) +(1/((1+tan((θ/2)))^2 )) +C .

$${let}\:\:{I}\:=\int\:\:\frac{{tan}\theta}{\mathrm{1}+{sin}\theta}\:{d}\theta\:\:{changement}\:\:{tan}\left(\frac{\theta}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}\:=\int\:\:\frac{\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }}{\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\int\:\:\frac{\mathrm{4}{tdt}}{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \:+\mathrm{2}{t}\right)}\:=−\int\:\frac{\mathrm{4}{t}}{\left({t}^{\mathrm{2}} −\mathrm{1}\right)\left({t}+\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$$$=−\mathrm{4}\int\:\:\frac{\mathrm{4}{t}}{\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)^{\mathrm{3}} }{dt}\:\:{let}\:{decompose}\:{F}\left({t}\right)\:=\frac{{t}}{\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${F}\left({t}\right)\:=\frac{{a}}{{t}−\mathrm{1}}\:+\frac{{b}}{{t}+\mathrm{1}}\:+\frac{{c}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{{d}}{\left({t}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${a}\:={lim}_{{x}\rightarrow\mathrm{1}} \left({t}−\mathrm{1}\right){F}\left({t}\right)\:=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${d}\:={lim}_{{t}\rightarrow−\mathrm{1}} \left({t}+\mathrm{1}\right)^{\mathrm{3}} {F}\left({t}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{F}\left({t}\right)\:=\frac{\mathrm{1}}{\mathrm{8}\left({t}−\mathrm{1}\right)}\:+\frac{{b}}{{t}+\mathrm{1}}\:+\frac{{c}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}\left({t}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${lim}_{{t}\rightarrow+\infty} \:{tF}\left({t}\right)\:=\mathrm{0}\:={a}+{b}\:\Rightarrow{b}\:=−\frac{\mathrm{1}}{\mathrm{8}}\:\Rightarrow \\ $$$${F}\left({t}\right)\:=\frac{\mathrm{1}}{\mathrm{8}\left({t}−\mathrm{1}\right)}\:−\frac{\mathrm{1}}{\mathrm{8}\left({t}+\mathrm{1}\right)}\:+\frac{{c}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{2}\left({t}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${F}\left(\mathrm{0}\right)\:=\mathrm{0}\:=−\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{8}}\:+{c}\:+\frac{\mathrm{1}}{\mathrm{2}}\:=−\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\:+{c}\:=\frac{\mathrm{1}}{\mathrm{4}}\:+{c}\:\Rightarrow{c}\:=−\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow \\ $$$${F}\left({t}\right)\:=\frac{\mathrm{1}}{\mathrm{8}\left({t}−\mathrm{1}\right)}\:−\frac{\mathrm{1}}{\mathrm{8}\left({t}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{4}\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{2}\left({t}+\mathrm{1}\right)^{\mathrm{3}} }\:\Rightarrow \\ $$$$\int\:{F}\left({t}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{8}}{ln}\mid{t}−\mathrm{1}\mid−\frac{\mathrm{1}}{\mathrm{8}}{ln}\mid{t}+\mathrm{1}\mid+\frac{\mathrm{1}}{\mathrm{4}\left({t}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{4}\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}{ln}\mid\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\mid\:+\frac{\mathrm{1}}{\mathrm{4}\left({t}+\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{4}\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:+{C}\:\Rightarrow \\ $$$${I}\:=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\mid−\frac{\mathrm{1}}{\left({t}+\mathrm{1}\right)}\:+\frac{\mathrm{1}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:+{C} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{{tan}\left(\frac{\theta}{\mathrm{2}}\right)−\mathrm{1}}{{tan}\left(\frac{\theta}{\mathrm{2}}\right)+\mathrm{1}}\mid−\frac{\mathrm{1}}{\mathrm{1}+{tan}\left(\frac{\theta}{\mathrm{2}}\right)}\:+\frac{\mathrm{1}}{\left(\mathrm{1}+{tan}\left(\frac{\theta}{\mathrm{2}}\right)\right)^{\mathrm{2}} }\:+{C}\:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com