Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 64758 by Tawa1 last updated on 21/Jul/19

Solve:     x^4  + 5x^3  − 4x^2  + 7x − 1  =  0

$$\mathrm{Solve}:\:\:\:\:\:\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{5x}^{\mathrm{3}} \:−\:\mathrm{4x}^{\mathrm{2}} \:+\:\mathrm{7x}\:−\:\mathrm{1}\:\:=\:\:\mathrm{0} \\ $$

Answered by ajfour last updated on 21/Jul/19

x=t−(5/4)  say  we then get     t^4 −at^2 +bt−c=0  ⇒ (t^2 −pt+q)(t^2 +pt+r)=0  ⇒  t^4 +(r+q−p^2 )t^2 +(−pr+pq)t+qr=0  ⇒  p^2 −(q+r)=a         p(q−r)=b         qr=−c  ⇒  (p^2 −a)^2 −(b^2 /p^2 )=−4c  let    p^2 =s  ⇒s^3 −2as^2 +(a^2 +4c)s−b^2 =0  let    s=k+((2a)/3)  ⇒  k^3 +((4a^2 k)/3)+((8a^3 )/(27))−((8a^2 k)/3)−((8a^3 )/9)       +(a^2 +4c)k+((2a(a^2 +4c))/3)−b^2 =0  say            k^3 +Pk+Q=0  k=[−(Q/2)+(√((Q^2 /4)+(P^( 3) /(27))))]^(1/3)               +[−(Q/2)−(√((Q^2 /4)+(P^( 3) /(27))))]^(1/3)     P =4c−(a^2 /3)   ;      Q= ((2a^3 )/(27))+((8ac)/3)−b^2    ■

$${x}={t}−\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${say}\:\:{we}\:{then}\:{get} \\ $$$$\:\:\:{t}^{\mathrm{4}} −{at}^{\mathrm{2}} +{bt}−{c}=\mathrm{0} \\ $$$$\Rightarrow\:\left({t}^{\mathrm{2}} −{pt}+{q}\right)\left({t}^{\mathrm{2}} +{pt}+{r}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{4}} +\left({r}+{q}−{p}^{\mathrm{2}} \right){t}^{\mathrm{2}} +\left(−{pr}+{pq}\right){t}+{qr}=\mathrm{0} \\ $$$$\Rightarrow\:\:{p}^{\mathrm{2}} −\left({q}+{r}\right)={a} \\ $$$$\:\:\:\:\:\:\:{p}\left({q}−{r}\right)={b} \\ $$$$\:\:\:\:\:\:\:{qr}=−{c} \\ $$$$\Rightarrow\:\:\left({p}^{\mathrm{2}} −{a}\right)^{\mathrm{2}} −\frac{{b}^{\mathrm{2}} }{{p}^{\mathrm{2}} }=−\mathrm{4}{c} \\ $$$${let}\:\:\:\:{p}^{\mathrm{2}} ={s} \\ $$$$\Rightarrow{s}^{\mathrm{3}} −\mathrm{2}{as}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +\mathrm{4}{c}\right){s}−{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${let}\:\:\:\:{s}={k}+\frac{\mathrm{2}{a}}{\mathrm{3}} \\ $$$$\Rightarrow\:\:{k}^{\mathrm{3}} +\frac{\mathrm{4}{a}^{\mathrm{2}} {k}}{\mathrm{3}}+\frac{\mathrm{8}{a}^{\mathrm{3}} }{\mathrm{27}}−\frac{\mathrm{8}{a}^{\mathrm{2}} {k}}{\mathrm{3}}−\frac{\mathrm{8}{a}^{\mathrm{3}} }{\mathrm{9}} \\ $$$$\:\:\:\:\:+\left({a}^{\mathrm{2}} +\mathrm{4}{c}\right){k}+\frac{\mathrm{2}{a}\left({a}^{\mathrm{2}} +\mathrm{4}{c}\right)}{\mathrm{3}}−{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${say} \\ $$$$\:\:\:\:\:\:\:\:\:\:{k}^{\mathrm{3}} +{Pk}+{Q}=\mathrm{0} \\ $$$${k}=\left[−\frac{{Q}}{\mathrm{2}}+\sqrt{\frac{{Q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{P}^{\:\mathrm{3}} }{\mathrm{27}}}\right]^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\left[−\frac{{Q}}{\mathrm{2}}−\sqrt{\frac{{Q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{P}^{\:\mathrm{3}} }{\mathrm{27}}}\right]^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:{P}\:=\mathrm{4}{c}−\frac{{a}^{\mathrm{2}} }{\mathrm{3}}\:\:\:;\: \\ $$$$\:\:\:{Q}=\:\frac{\mathrm{2}{a}^{\mathrm{3}} }{\mathrm{27}}+\frac{\mathrm{8}{ac}}{\mathrm{3}}−{b}^{\mathrm{2}} \: \\ $$$$\blacksquare \\ $$

Commented by Tawa1 last updated on 21/Jul/19

Wow,  waiting for the rest sir

$$\mathrm{Wow},\:\:\mathrm{waiting}\:\mathrm{for}\:\mathrm{the}\:\mathrm{rest}\:\mathrm{sir} \\ $$

Answered by MJS last updated on 21/Jul/19

no “beautiful” solution  x_1 ≈−5.88645  x_2 ≈.153681  x_(3, 4) ≈.366384±.985486i

$$\mathrm{no}\:``\mathrm{beautiful}''\:\mathrm{solution} \\ $$$${x}_{\mathrm{1}} \approx−\mathrm{5}.\mathrm{88645} \\ $$$${x}_{\mathrm{2}} \approx.\mathrm{153681} \\ $$$${x}_{\mathrm{3},\:\mathrm{4}} \approx.\mathrm{366384}\pm.\mathrm{985486i} \\ $$

Commented by ajfour last updated on 21/Jul/19

Thanks sir, i had made blunder,  had practiced quintic excessively  before, thats why..

$${Thanks}\:{sir},\:{i}\:{had}\:{made}\:{blunder}, \\ $$$${had}\:{practiced}\:{quintic}\:{excessively} \\ $$$${before},\:{thats}\:{why}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com