Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 64797 by MJS last updated on 21/Jul/19

for Tawa, an old problem explained  (1)  x+y+z=α  (2)  x^2 +y^2 +z^2 =β  (3)  x^3 +y^3 +z^3 =γ  α, β, γ are given    (4)  x^4 +y^4 +z^4 =p  (5)  x^5 +y^5 +z^5 =q  find p, q    we could try to solve the system but it′s hard  to exactly solve it and then calculate the  sums of the 4^(th)  and 5^(th)  powers.  instead, let′s think of the shape of the  solutions of a polynome of 3^(rd)  degree. they  might look like this:  t_1 =a  t_2 =b−(√c)  t_3 =b+(√c)  let′s try it!    x=a  y=b−(√c)  z=b+(√c)  ⇒  (1)  a+2b=α  (2)  a^2 +2b^2 +2c=β  (3)  a^3 +2b^3 +6bc=γ    (4)  a^4 +2b^4 +12b^2 c+2c^2 −p=0  (5)  a^5 +2b^5 +20b^3 c+10bc^2 −q=0    doesn′t look that bad. we can easily solve  equation (1) for a and equation (2) for c  (1)  a=α−2b  (2)  c=−(a^2 /2)−b^2 +(β/2)=^([using (1)]) −3b^2 +2αb−(α^2 /2)+(β/2)  now let′s insert these in (3), (4) and (5)  (3)  −24b^3 +24αb^2 −3(3α^2 −β)b+α^3 −γ=0  (4)  −32αb^3 +32α^2 b^2 −4α(3α^2 −β)b+((3α^4 )/2)−α^2 β+(β^2 /2)−p=0  (5)  −20(α^2 +β)b^3 +20α(α^2 +β)b^2 −(5/2)(3α^4 +2α^2 β−β^2 )b+α^5 −q=0  dividing by the constant factors of b^2   (3)  b^3 −αb^2 +((3α^2 −β)/8)b−((α^3 −γ)/(24))=0  (4)  b^3 −αb^2 +((3α^2 −β)/8)b+((2p−3α^4 +2α^2 β−β^2 )/(64α))=0  (5)  b^3 −αb^2 +((3α^2 −β)/8)b+((q−α^5 )/(20(α^2 +β)))=0  only the red factors differ ⇒ they must have  the same values!  ⇒ −((α^3 −γ)/(24))=((2p−3α^4 +2α^2 β−β^2 )/(64α))=((q−α^5 )/(20(α^2 +β)))  ⇒  p=(α^4 /6)−α^2 β+((4αγ)/3)+(β^2 /2)  q=(α^5 /6)−((5α^3 β)/6)+((5α^2 γ)/6)+((5βγ)/6)  solved without solving    the same idea is trivial for 2 equations  x+y=α  x^2 +y^2 =β  x^n +y^n =p with n>2∧n∈N  put x=a−(√b)  y=a+(√b)  ⇒  2a=α  2a^2 +2b=β  ⇒ a=(α/2)  b=(β/2)−(α^2 /4)  we might as well solve the system    and for 4 equations unfortunately we must  solve the system  w+x+y+z=α  w^2 +x^2 +y^2 +z^2 =β  w^3 +x^3 +y^3 +z^3 =γ  w^4 +x^4 +y^4 +z^4 =δ  but it still makes it easier to solve putting  w=a−(√b)  x=a+(√b)  y=c−(√b)  z=c+(√d)

$$\mathrm{for}\:\mathrm{Tawa},\:\mathrm{an}\:\mathrm{old}\:\mathrm{problem}\:\mathrm{explained} \\ $$$$\left(\mathrm{1}\right)\:\:{x}+{y}+{z}=\alpha \\ $$$$\left(\mathrm{2}\right)\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\beta \\ $$$$\left(\mathrm{3}\right)\:\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\gamma \\ $$$$\alpha,\:\beta,\:\gamma\:\mathrm{are}\:\mathrm{given} \\ $$$$ \\ $$$$\left(\mathrm{4}\right)\:\:{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} ={p} \\ $$$$\left(\mathrm{5}\right)\:\:{x}^{\mathrm{5}} +{y}^{\mathrm{5}} +{z}^{\mathrm{5}} ={q} \\ $$$$\mathrm{find}\:{p},\:{q} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{could}\:\mathrm{try}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{hard} \\ $$$$\mathrm{to}\:\mathrm{exactly}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{and}\:\mathrm{then}\:\mathrm{calculate}\:\mathrm{the} \\ $$$$\mathrm{sums}\:\mathrm{of}\:\mathrm{the}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{and}\:\mathrm{5}^{\mathrm{th}} \:\mathrm{powers}. \\ $$$$\mathrm{instead},\:\mathrm{let}'\mathrm{s}\:\mathrm{think}\:\mathrm{of}\:\mathrm{the}\:\mathrm{shape}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{solutions}\:\mathrm{of}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree}.\:\mathrm{they} \\ $$$$\mathrm{might}\:\mathrm{look}\:\mathrm{like}\:\mathrm{this}: \\ $$$${t}_{\mathrm{1}} ={a}\:\:{t}_{\mathrm{2}} ={b}−\sqrt{{c}}\:\:{t}_{\mathrm{3}} ={b}+\sqrt{{c}} \\ $$$$\mathrm{let}'\mathrm{s}\:\mathrm{try}\:\mathrm{it}! \\ $$$$ \\ $$$${x}={a} \\ $$$${y}={b}−\sqrt{{c}} \\ $$$${z}={b}+\sqrt{{c}} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{1}\right)\:\:{a}+\mathrm{2}{b}=\alpha \\ $$$$\left(\mathrm{2}\right)\:\:{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}{c}=\beta \\ $$$$\left(\mathrm{3}\right)\:\:{a}^{\mathrm{3}} +\mathrm{2}{b}^{\mathrm{3}} +\mathrm{6}{bc}=\gamma \\ $$$$ \\ $$$$\left(\mathrm{4}\right)\:\:{a}^{\mathrm{4}} +\mathrm{2}{b}^{\mathrm{4}} +\mathrm{12}{b}^{\mathrm{2}} {c}+\mathrm{2}{c}^{\mathrm{2}} −{p}=\mathrm{0} \\ $$$$\left(\mathrm{5}\right)\:\:{a}^{\mathrm{5}} +\mathrm{2}{b}^{\mathrm{5}} +\mathrm{20}{b}^{\mathrm{3}} {c}+\mathrm{10}{bc}^{\mathrm{2}} −{q}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{doesn}'\mathrm{t}\:\mathrm{look}\:\mathrm{that}\:\mathrm{bad}.\:\mathrm{we}\:\mathrm{can}\:\mathrm{easily}\:\mathrm{solve} \\ $$$$\mathrm{equation}\:\left(\mathrm{1}\right)\:\mathrm{for}\:{a}\:\mathrm{and}\:\mathrm{equation}\:\left(\mathrm{2}\right)\:\mathrm{for}\:{c} \\ $$$$\left(\mathrm{1}\right)\:\:{a}=\alpha−\mathrm{2}{b} \\ $$$$\left(\mathrm{2}\right)\:\:{c}=−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}−{b}^{\mathrm{2}} +\frac{\beta}{\mathrm{2}}\overset{\left[\mathrm{using}\:\left(\mathrm{1}\right)\right]} {=}−\mathrm{3}{b}^{\mathrm{2}} +\mathrm{2}\alpha{b}−\frac{\alpha^{\mathrm{2}} }{\mathrm{2}}+\frac{\beta}{\mathrm{2}} \\ $$$$\mathrm{now}\:\mathrm{let}'\mathrm{s}\:\mathrm{insert}\:\mathrm{these}\:\mathrm{in}\:\left(\mathrm{3}\right),\:\left(\mathrm{4}\right)\:\mathrm{and}\:\left(\mathrm{5}\right) \\ $$$$\left(\mathrm{3}\right)\:\:−\mathrm{24}{b}^{\mathrm{3}} +\mathrm{24}\alpha{b}^{\mathrm{2}} −\mathrm{3}\left(\mathrm{3}\alpha^{\mathrm{2}} −\beta\right){b}+\alpha^{\mathrm{3}} −\gamma=\mathrm{0} \\ $$$$\left(\mathrm{4}\right)\:\:−\mathrm{32}\alpha{b}^{\mathrm{3}} +\mathrm{32}\alpha^{\mathrm{2}} {b}^{\mathrm{2}} −\mathrm{4}\alpha\left(\mathrm{3}\alpha^{\mathrm{2}} −\beta\right){b}+\frac{\mathrm{3}\alpha^{\mathrm{4}} }{\mathrm{2}}−\alpha^{\mathrm{2}} \beta+\frac{\beta^{\mathrm{2}} }{\mathrm{2}}−{p}=\mathrm{0} \\ $$$$\left(\mathrm{5}\right)\:\:−\mathrm{20}\left(\alpha^{\mathrm{2}} +\beta\right){b}^{\mathrm{3}} +\mathrm{20}\alpha\left(\alpha^{\mathrm{2}} +\beta\right){b}^{\mathrm{2}} −\frac{\mathrm{5}}{\mathrm{2}}\left(\mathrm{3}\alpha^{\mathrm{4}} +\mathrm{2}\alpha^{\mathrm{2}} \beta−\beta^{\mathrm{2}} \right){b}+\alpha^{\mathrm{5}} −{q}=\mathrm{0} \\ $$$$\mathrm{dividing}\:\mathrm{by}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{factors}\:\mathrm{of}\:{b}^{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\:{b}^{\mathrm{3}} −\alpha{b}^{\mathrm{2}} +\frac{\mathrm{3}\alpha^{\mathrm{2}} −\beta}{\mathrm{8}}{b}−\frac{\alpha^{\mathrm{3}} −\gamma}{\mathrm{24}}=\mathrm{0} \\ $$$$\left(\mathrm{4}\right)\:\:{b}^{\mathrm{3}} −\alpha{b}^{\mathrm{2}} +\frac{\mathrm{3}\alpha^{\mathrm{2}} −\beta}{\mathrm{8}}{b}+\frac{\mathrm{2}{p}−\mathrm{3}\alpha^{\mathrm{4}} +\mathrm{2}\alpha^{\mathrm{2}} \beta−\beta^{\mathrm{2}} }{\mathrm{64}\alpha}=\mathrm{0} \\ $$$$\left(\mathrm{5}\right)\:\:{b}^{\mathrm{3}} −\alpha{b}^{\mathrm{2}} +\frac{\mathrm{3}\alpha^{\mathrm{2}} −\beta}{\mathrm{8}}{b}+\frac{{q}−\alpha^{\mathrm{5}} }{\mathrm{20}\left(\alpha^{\mathrm{2}} +\beta\right)}=\mathrm{0} \\ $$$$\mathrm{only}\:\mathrm{the}\:\mathrm{red}\:\mathrm{factors}\:\mathrm{differ}\:\Rightarrow\:\mathrm{they}\:\mathrm{must}\:\mathrm{have} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{values}! \\ $$$$\Rightarrow\:−\frac{\alpha^{\mathrm{3}} −\gamma}{\mathrm{24}}=\frac{\mathrm{2}{p}−\mathrm{3}\alpha^{\mathrm{4}} +\mathrm{2}\alpha^{\mathrm{2}} \beta−\beta^{\mathrm{2}} }{\mathrm{64}\alpha}=\frac{{q}−\alpha^{\mathrm{5}} }{\mathrm{20}\left(\alpha^{\mathrm{2}} +\beta\right)} \\ $$$$\Rightarrow \\ $$$${p}=\frac{\alpha^{\mathrm{4}} }{\mathrm{6}}−\alpha^{\mathrm{2}} \beta+\frac{\mathrm{4}\alpha\gamma}{\mathrm{3}}+\frac{\beta^{\mathrm{2}} }{\mathrm{2}} \\ $$$${q}=\frac{\alpha^{\mathrm{5}} }{\mathrm{6}}−\frac{\mathrm{5}\alpha^{\mathrm{3}} \beta}{\mathrm{6}}+\frac{\mathrm{5}\alpha^{\mathrm{2}} \gamma}{\mathrm{6}}+\frac{\mathrm{5}\beta\gamma}{\mathrm{6}} \\ $$$$\mathrm{solved}\:\mathrm{without}\:\mathrm{solving} \\ $$$$ \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{idea}\:\mathrm{is}\:\mathrm{trivial}\:\mathrm{for}\:\mathrm{2}\:\mathrm{equations} \\ $$$${x}+{y}=\alpha \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\beta \\ $$$${x}^{{n}} +{y}^{{n}} ={p}\:\mathrm{with}\:{n}>\mathrm{2}\wedge{n}\in\mathbb{N} \\ $$$$\mathrm{put}\:{x}={a}−\sqrt{{b}}\:\:{y}={a}+\sqrt{{b}} \\ $$$$\Rightarrow \\ $$$$\mathrm{2}{a}=\alpha \\ $$$$\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}{b}=\beta \\ $$$$\Rightarrow\:{a}=\frac{\alpha}{\mathrm{2}}\:\:{b}=\frac{\beta}{\mathrm{2}}−\frac{\alpha^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\mathrm{we}\:\mathrm{might}\:\mathrm{as}\:\mathrm{well}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{system} \\ $$$$ \\ $$$$\mathrm{and}\:\mathrm{for}\:\mathrm{4}\:\mathrm{equations}\:\mathrm{unfortunately}\:\mathrm{we}\:\boldsymbol{\mathrm{must}} \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{system} \\ $$$${w}+{x}+{y}+{z}=\alpha \\ $$$${w}^{\mathrm{2}} +{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\beta \\ $$$${w}^{\mathrm{3}} +{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\gamma \\ $$$${w}^{\mathrm{4}} +{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =\delta \\ $$$$\mathrm{but}\:\mathrm{it}\:\mathrm{still}\:\mathrm{makes}\:\mathrm{it}\:\mathrm{easier}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{putting} \\ $$$${w}={a}−\sqrt{{b}}\:\:{x}={a}+\sqrt{{b}}\:\:{y}={c}−\sqrt{{b}}\:\:{z}={c}+\sqrt{{d}} \\ $$

Commented by Tawa1 last updated on 21/Jul/19

Wow, great, you are helping me more, God will help you more too  in no particular order,  .Sir Mjs,  Sir MrW,  sir Tanmay,  matabodo  and every other person here.  God bless everyone here and me too. Hahahaha.

$$\mathrm{Wow},\:\mathrm{great},\:\mathrm{you}\:\mathrm{are}\:\mathrm{helping}\:\mathrm{me}\:\mathrm{more},\:\mathrm{God}\:\mathrm{will}\:\mathrm{help}\:\mathrm{you}\:\mathrm{more}\:\mathrm{too} \\ $$$$\mathrm{in}\:\mathrm{no}\:\mathrm{particular}\:\mathrm{order}, \\ $$$$.\mathrm{Sir}\:\mathrm{Mjs},\:\:\mathrm{Sir}\:\mathrm{MrW},\:\:\mathrm{sir}\:\mathrm{Tanmay},\:\:\mathrm{matabodo}\:\:\mathrm{and}\:\mathrm{every}\:\mathrm{other}\:\mathrm{person}\:\mathrm{here}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{everyone}\:\mathrm{here}\:\mathrm{and}\:\mathrm{me}\:\mathrm{too}.\:\mathrm{Hahahaha}. \\ $$

Commented by Tawa1 last updated on 25/Jul/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19

      let consider  P(t)=(t−x)(t−y)(t−z)   and  u_n =x^n +y^n +z^n   By  reducing P (t)=t^3 +at^2 +bt^ +c    with a=−(x+y+z)  b=xy+xz+yz     c=−xyz  we can easily prove that   u_(n+3) +au_(n+2) +bu_(n+1) +cu_n =x^n P(x)+y^n P(y)+z^n P(z)=0   (∗)  Then  u_4 =−au_3 −bu_2 −cu_(1    )   u_5 =−au_4 −bu_3 −cu_2   So  we juzt need to prove that a b c are known and find them  a=−α           (x+y+z)^2 =x^2 +y^2 +z^2 +2(xy+xz+yz) ⇒ b=(1/2)(u_1 ^2 −u_2 )=(1/2)(α^2 −β)  (x+y+z)^3 = (x+y)^3 +3z(x+y)(x+y+z)+z^3               =x^3 +3xy(x+y)+y^3 +3α(xz+zy)+z^3               =u_3 +3xy(α−z)+3α(zx+zy)=u_3 +3αb−3xyz  we get  c=−xyz =(1/3)(u_1 ^3 −u_3 −3αb)=(1/3)[α^3 −γ−3α(((α^2 −β)/2))]=(1/3)[((3αβ)/2)−(α^3 /2)−γ]  as a  b c are known and found we can easily find u_(n )  ∀ n>4 by using the egality (∗)

$$ \\ $$$$ \\ $$$$\:\:{let}\:{consider}\:\:{P}\left({t}\right)=\left({t}−{x}\right)\left({t}−{y}\right)\left({t}−{z}\right)\:\:\:{and}\:\:{u}_{{n}} ={x}^{{n}} +{y}^{{n}} +{z}^{{n}} \\ $$$${By}\:\:{reducing}\:{P}\:\left({t}\right)={t}^{\mathrm{3}} +{at}^{\mathrm{2}} +{bt}^{} +{c}\:\:\:\:{with}\:{a}=−\left({x}+{y}+{z}\right)\:\:{b}={xy}+{xz}+{yz}\:\:\:\:\:{c}=−{xyz} \\ $$$${we}\:{can}\:{easily}\:{prove}\:{that}\: \\ $$$${u}_{{n}+\mathrm{3}} +{au}_{{n}+\mathrm{2}} +{bu}_{{n}+\mathrm{1}} +{cu}_{{n}} ={x}^{{n}} {P}\left({x}\right)+{y}^{{n}} {P}\left({y}\right)+{z}^{{n}} {P}\left({z}\right)=\mathrm{0}\:\:\:\left(\ast\right) \\ $$$${Then} \\ $$$${u}_{\mathrm{4}} =−{au}_{\mathrm{3}} −{bu}_{\mathrm{2}} −{cu}_{\mathrm{1}\:\:\:\:} \\ $$$${u}_{\mathrm{5}} =−{au}_{\mathrm{4}} −{bu}_{\mathrm{3}} −{cu}_{\mathrm{2}} \\ $$$${So}\:\:{we}\:{juzt}\:{need}\:{to}\:{prove}\:{that}\:{a}\:{b}\:{c}\:{are}\:{known}\:{and}\:{find}\:{them} \\ $$$${a}=−\alpha\:\:\:\:\:\:\:\:\: \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}\left({xy}+{xz}+{yz}\right)\:\Rightarrow\:{b}=\frac{\mathrm{1}}{\mathrm{2}}\left({u}_{\mathrm{1}} ^{\mathrm{2}} −{u}_{\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\alpha^{\mathrm{2}} −\beta\right) \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{3}} =\:\left({x}+{y}\right)^{\mathrm{3}} +\mathrm{3}{z}\left({x}+{y}\right)\left({x}+{y}+{z}\right)+{z}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={x}^{\mathrm{3}} +\mathrm{3}{xy}\left({x}+{y}\right)+{y}^{\mathrm{3}} +\mathrm{3}\alpha\left({xz}+{zy}\right)+{z}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={u}_{\mathrm{3}} +\mathrm{3}{xy}\left(\alpha−{z}\right)+\mathrm{3}\alpha\left({zx}+{zy}\right)={u}_{\mathrm{3}} +\mathrm{3}\alpha{b}−\mathrm{3}{xyz} \\ $$$${we}\:{get}\:\:{c}=−{xyz}\:=\frac{\mathrm{1}}{\mathrm{3}}\left({u}_{\mathrm{1}} ^{\mathrm{3}} −{u}_{\mathrm{3}} −\mathrm{3}\alpha{b}\right)=\frac{\mathrm{1}}{\mathrm{3}}\left[\alpha^{\mathrm{3}} −\gamma−\mathrm{3}\alpha\left(\frac{\alpha^{\mathrm{2}} −\beta}{\mathrm{2}}\right)\right]=\frac{\mathrm{1}}{\mathrm{3}}\left[\frac{\mathrm{3}\alpha\beta}{\mathrm{2}}−\frac{\alpha^{\mathrm{3}} }{\mathrm{2}}−\gamma\right] \\ $$$${as}\:{a}\:\:{b}\:{c}\:{are}\:{known}\:{and}\:{found}\:{we}\:{can}\:{easily}\:{find}\:{u}_{{n}\:} \:\forall\:{n}>\mathrm{4}\:{by}\:{using}\:{the}\:{egality}\:\left(\ast\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com