Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 64829 by Tawa1 last updated on 22/Jul/19

Commented by Tawa1 last updated on 22/Jul/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Tony Lin last updated on 22/Jul/19

let∠BDC=θ  BC=(√(17^2 +11^2 −2×17×11cosθ))         =(√(410−374cosθ))  AB=(√(17^2 +31^2 −2×17×31cos(π−θ)))         =(√(17^2 +31^2 +2×17×31cosθ))         =(√(1250+1054cosθ))  area of △ABC  =BC×AB×(1/2)  =(1/2)×(BD×DC×sinθ+BD×AD×sin(π−θ)  =(1/2)×17×(11+31)sinθ  =357sinθ  ⇒(√((410−374cosθ)(1250+1054cosθ)))       =714sinθ  ⇒(√(512500−35360cosθ−394196cos^2 θ))      = 714sinθ  let cosθ=t  ⇒(√(512500−35360t−394196t^2 ))      =714(√(1−t^2 ))  ⇒512500−35360t−394196t^2       =509796−509796t^2   ⇒115600t^2 −35360t+2704=0  ⇒t=((13)/(85))  area of △BDC  =(1/2)×BD×DC×sinθ  =(1/2)×17×11×(√(1−(((13)/(85)))^2 ))  =92.4

$${let}\angle{BDC}=\theta \\ $$$${BC}=\sqrt{\mathrm{17}^{\mathrm{2}} +\mathrm{11}^{\mathrm{2}} −\mathrm{2}×\mathrm{17}×\mathrm{11}{cos}\theta} \\ $$$$\:\:\:\:\:\:\:=\sqrt{\mathrm{410}−\mathrm{374}{cos}\theta} \\ $$$${AB}=\sqrt{\mathrm{17}^{\mathrm{2}} +\mathrm{31}^{\mathrm{2}} −\mathrm{2}×\mathrm{17}×\mathrm{31}{cos}\left(\pi−\theta\right)} \\ $$$$\:\:\:\:\:\:\:=\sqrt{\mathrm{17}^{\mathrm{2}} +\mathrm{31}^{\mathrm{2}} +\mathrm{2}×\mathrm{17}×\mathrm{31}{cos}\theta} \\ $$$$\:\:\:\:\:\:\:=\sqrt{\mathrm{1250}+\mathrm{1054}{cos}\theta} \\ $$$${area}\:{of}\:\bigtriangleup{ABC} \\ $$$$={BC}×{AB}×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\left({BD}×{DC}×{sin}\theta+{BD}×{AD}×{sin}\left(\pi−\theta\right)\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{17}×\left(\mathrm{11}+\mathrm{31}\right){sin}\theta \\ $$$$=\mathrm{357}{sin}\theta \\ $$$$\Rightarrow\sqrt{\left(\mathrm{410}−\mathrm{374}{cos}\theta\right)\left(\mathrm{1250}+\mathrm{1054}{cos}\theta\right)} \\ $$$$\:\:\:\:\:=\mathrm{714}{sin}\theta \\ $$$$\Rightarrow\sqrt{\mathrm{512500}−\mathrm{35360}{cos}\theta−\mathrm{394196}{cos}^{\mathrm{2}} \theta} \\ $$$$\:\:\:\:=\:\mathrm{714}{sin}\theta \\ $$$${let}\:{cos}\theta={t} \\ $$$$\Rightarrow\sqrt{\mathrm{512500}−\mathrm{35360}{t}−\mathrm{394196}{t}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\mathrm{714}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{512500}−\mathrm{35360}{t}−\mathrm{394196}{t}^{\mathrm{2}} \\ $$$$\:\:\:\:=\mathrm{509796}−\mathrm{509796}{t}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{115600}{t}^{\mathrm{2}} −\mathrm{35360}{t}+\mathrm{2704}=\mathrm{0} \\ $$$$\Rightarrow{t}=\frac{\mathrm{13}}{\mathrm{85}} \\ $$$${area}\:{of}\:\bigtriangleup{BDC} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×{BD}×{DC}×{sin}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{17}×\mathrm{11}×\sqrt{\mathrm{1}−\left(\frac{\mathrm{13}}{\mathrm{85}}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{92}.\mathrm{4} \\ $$

Commented by mathmax by abdo last updated on 23/Jul/19

where are you from sir tony...

$${where}\:{are}\:{you}\:{from}\:{sir}\:{tony}... \\ $$

Commented by Tony Lin last updated on 23/Jul/19

Taiwan

$${Taiwan} \\ $$

Answered by MJS last updated on 22/Jul/19

put ((A+C)/2) in the center  ⇒ A= (((−21)),(0) )  C= (((21)),(0) )  D= (((10)),(0) )  B lies on the circumcircle x^2 +y^2 =21^2   B= ((x),((√(441−x^2 ))) )  ∣BD∣=17  (√((x−10)^2 +((√(441−x^2 ))−0)^2 ))=17  (√(541−20x))=17  x=((63)/5)  B= ((((63)/5)),(((84)/5)) )  ∣BC∣=(√((((63)/5)−21)^2 +(((84)/5)−0)^2 ))=((42(√5))/5)  ⇒ the shaded triangle has sides  11, 17, ((42(√5))/5)  the area of a triangle with sides a, b, c is  ((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/4)  ⇒ shaded area = ((462)/5)=92.4

$$\mathrm{put}\:\frac{{A}+{C}}{\mathrm{2}}\:\mathrm{in}\:\mathrm{the}\:\mathrm{center} \\ $$$$\Rightarrow\:{A}=\begin{pmatrix}{−\mathrm{21}}\\{\mathrm{0}}\end{pmatrix}\:\:\mathrm{C}=\begin{pmatrix}{\mathrm{21}}\\{\mathrm{0}}\end{pmatrix}\:\:{D}=\begin{pmatrix}{\mathrm{10}}\\{\mathrm{0}}\end{pmatrix} \\ $$$${B}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumcircle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{21}^{\mathrm{2}} \\ $$$${B}=\begin{pmatrix}{{x}}\\{\sqrt{\mathrm{441}−{x}^{\mathrm{2}} }}\end{pmatrix} \\ $$$$\mid{BD}\mid=\mathrm{17} \\ $$$$\sqrt{\left({x}−\mathrm{10}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{441}−{x}^{\mathrm{2}} }−\mathrm{0}\right)^{\mathrm{2}} }=\mathrm{17} \\ $$$$\sqrt{\mathrm{541}−\mathrm{20}{x}}=\mathrm{17} \\ $$$${x}=\frac{\mathrm{63}}{\mathrm{5}} \\ $$$${B}=\begin{pmatrix}{\frac{\mathrm{63}}{\mathrm{5}}}\\{\frac{\mathrm{84}}{\mathrm{5}}}\end{pmatrix} \\ $$$$\mid{BC}\mid=\sqrt{\left(\frac{\mathrm{63}}{\mathrm{5}}−\mathrm{21}\right)^{\mathrm{2}} +\left(\frac{\mathrm{84}}{\mathrm{5}}−\mathrm{0}\right)^{\mathrm{2}} }=\frac{\mathrm{42}\sqrt{\mathrm{5}}}{\mathrm{5}} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{triangle}\:\mathrm{has}\:\mathrm{sides} \\ $$$$\mathrm{11},\:\mathrm{17},\:\frac{\mathrm{42}\sqrt{\mathrm{5}}}{\mathrm{5}} \\ $$$$\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{sides}\:{a},\:{b},\:{c}\:\mathrm{is} \\ $$$$\frac{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}{\mathrm{4}} \\ $$$$\Rightarrow\:\mathrm{shaded}\:\mathrm{area}\:=\:\frac{\mathrm{462}}{\mathrm{5}}=\mathrm{92}.\mathrm{4} \\ $$$$ \\ $$

Commented by Tawa1 last updated on 22/Jul/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by ajfour last updated on 22/Jul/19

Commented by ajfour last updated on 22/Jul/19

cos θ=((21^2 −10^2 −17^2 )/(2×10×17)) = ((13)/(85))  sin θ=((√(7225−169))/(85)) = ((84)/(85))  A_(rea) =(1/2)×11×17sin θ   A_(rea) =((11×17×84)/(2×85))=((11×42)/5)=((462)/5)          A_(rea)  = 92.4 sq units ■

$$\mathrm{cos}\:\theta=\frac{\mathrm{21}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} −\mathrm{17}^{\mathrm{2}} }{\mathrm{2}×\mathrm{10}×\mathrm{17}}\:=\:\frac{\mathrm{13}}{\mathrm{85}} \\ $$$$\mathrm{sin}\:\theta=\frac{\sqrt{\mathrm{7225}−\mathrm{169}}}{\mathrm{85}}\:=\:\frac{\mathrm{84}}{\mathrm{85}} \\ $$$${A}_{{rea}} =\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{11}×\mathrm{17sin}\:\theta\: \\ $$$${A}_{{rea}} =\frac{\mathrm{11}×\mathrm{17}×\mathrm{84}}{\mathrm{2}×\mathrm{85}}=\frac{\mathrm{11}×\mathrm{42}}{\mathrm{5}}=\frac{\mathrm{462}}{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:{A}_{{rea}} \:=\:\mathrm{92}.\mathrm{4}\:{sq}\:{units}\:\blacksquare \\ $$

Commented by ajfour last updated on 22/Jul/19

so you dont seem to like this  solution, Tawa.

$${so}\:{you}\:{dont}\:{seem}\:{to}\:{like}\:{this} \\ $$$${solution},\:{Tawa}. \\ $$

Commented by MJS last updated on 22/Jul/19

she′s not yet through with it

$$\mathrm{she}'\mathrm{s}\:\mathrm{not}\:\mathrm{yet}\:\mathrm{through}\:\mathrm{with}\:\mathrm{it} \\ $$

Commented by Tawa1 last updated on 22/Jul/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Tawa1 last updated on 22/Jul/19

Hahaha. No sir, i am going through it.

$$\mathrm{Hahaha}.\:\mathrm{No}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{am}\:\mathrm{going}\:\mathrm{through}\:\mathrm{it}.\: \\ $$

Commented by Tawa1 last updated on 22/Jul/19

And i am grateful sir. God bless you

$$\mathrm{And}\:\mathrm{i}\:\mathrm{am}\:\mathrm{grateful}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com