Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 64860 by Tawa1 last updated on 22/Jul/19

Commented by Tawa1 last updated on 22/Jul/19

Number 11 and 13

$$\mathrm{Number}\:\mathrm{11}\:\mathrm{and}\:\mathrm{13} \\ $$

Commented by mathmax by abdo last updated on 22/Jul/19

1) xy^(′′)  +(2v+1)y^′  +xy =0  let use the changement y =x^(−v) z  ⇒y =e^(−vlnx) z ⇒y^′  =−(v/x) e^(−vlnx) z +e^(−vlnx) z^′   =(−(v/x) z +z^′ )e^(−vlnx)  ⇒y^(′′)  =((v/x^2 )z −(v/x)z′ +z^(′′) )e^(−vlnx)   −(v/x) e^(−vlnx) (−(v/x)z +z^′ ) =((v/x^2 )z−(v/x)z^′  +z^(′′) +(v^2 /x^2 )z−(v/x)z^′ )e^(−vlnx)   (e)⇒((v/x)z−vz^′  +xz′′ +(v/x)z−vz^′ )e^(−vlnx)  +(2v+1)(−(v/x)z +z^′ )e^(−vlnx)   +xz e^(−vlnx)  =0 ⇒  ((2v)/x)z−2vz^′  +xz^(′′)  −((2v^2 )/x)z+2vz^′ −(v/x)z +z^′  +xz =0 ⇒  2vz −2vxz^′  +x^2 z^(′′)  −2v^2 z +2vxz^′ −vz +xz^′  +x^2 z =0 ⇒  x^2 z^(′′)   +(−2vx +2vx  +x)z^′  +(2v−v +x^2 )z =0 ⇒  x^2 z^(′′)  +xz^′   +(x^2  +v)z =0   linear (e)at 2^(me)  ordre ...be continued....

$$\left.\mathrm{1}\right)\:{xy}^{''} \:+\left(\mathrm{2}{v}+\mathrm{1}\right){y}^{'} \:+{xy}\:=\mathrm{0}\:\:{let}\:{use}\:{the}\:{changement}\:{y}\:={x}^{−{v}} {z} \\ $$$$\Rightarrow{y}\:={e}^{−{vlnx}} {z}\:\Rightarrow{y}^{'} \:=−\frac{{v}}{{x}}\:{e}^{−{vlnx}} {z}\:+{e}^{−{vlnx}} {z}^{'} \\ $$$$=\left(−\frac{{v}}{{x}}\:{z}\:+{z}^{'} \right){e}^{−{vlnx}} \:\Rightarrow{y}^{''} \:=\left(\frac{{v}}{{x}^{\mathrm{2}} }{z}\:−\frac{{v}}{{x}}{z}'\:+{z}^{''} \right){e}^{−{vlnx}} \\ $$$$−\frac{{v}}{{x}}\:{e}^{−{vlnx}} \left(−\frac{{v}}{{x}}{z}\:+{z}^{'} \right)\:=\left(\frac{{v}}{{x}^{\mathrm{2}} }{z}−\frac{{v}}{{x}}{z}^{'} \:+{z}^{''} +\frac{{v}^{\mathrm{2}} }{{x}^{\mathrm{2}} }{z}−\frac{{v}}{{x}}{z}^{'} \right){e}^{−{vlnx}} \\ $$$$\left({e}\right)\Rightarrow\left(\frac{{v}}{{x}}{z}−{vz}^{'} \:+{xz}''\:+\frac{{v}}{{x}}{z}−{vz}^{'} \right){e}^{−{vlnx}} \:+\left(\mathrm{2}{v}+\mathrm{1}\right)\left(−\frac{{v}}{{x}}{z}\:+{z}^{'} \right){e}^{−{vlnx}} \\ $$$$+{xz}\:{e}^{−{vlnx}} \:=\mathrm{0}\:\Rightarrow \\ $$$$\frac{\mathrm{2}{v}}{{x}}{z}−\mathrm{2}{vz}^{'} \:+{xz}^{''} \:−\frac{\mathrm{2}{v}^{\mathrm{2}} }{{x}}{z}+\mathrm{2}{vz}^{'} −\frac{{v}}{{x}}{z}\:+{z}^{'} \:+{xz}\:=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{2}{vz}\:−\mathrm{2}{vxz}^{'} \:+{x}^{\mathrm{2}} {z}^{''} \:−\mathrm{2}{v}^{\mathrm{2}} {z}\:+\mathrm{2}{vxz}^{'} −{vz}\:+{xz}^{'} \:+{x}^{\mathrm{2}} {z}\:=\mathrm{0}\:\Rightarrow \\ $$$${x}^{\mathrm{2}} {z}^{''} \:\:+\left(−\mathrm{2}{vx}\:+\mathrm{2}{vx}\:\:+{x}\right){z}^{'} \:+\left(\mathrm{2}{v}−{v}\:+{x}^{\mathrm{2}} \right){z}\:=\mathrm{0}\:\Rightarrow \\ $$$${x}^{\mathrm{2}} {z}^{''} \:+{xz}^{'} \:\:+\left({x}^{\mathrm{2}} \:+{v}\right){z}\:=\mathrm{0}\:\:\:{linear}\:\left({e}\right){at}\:\mathrm{2}^{{me}} \:{ordre}\:...{be}\:{continued}.... \\ $$

Commented by Tawa1 last updated on 22/Jul/19

God bless you sir.  waiting sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{waiting}\:\mathrm{sir} \\ $$

Commented by Tawa1 last updated on 24/Jul/19

Please sir, the rest solution

$$\mathrm{Please}\:\mathrm{sir},\:\mathrm{the}\:\mathrm{rest}\:\mathrm{solution} \\ $$

Commented by mathmax by abdo last updated on 25/Jul/19

let put x =e^t  ⇒z(x) =z(e^t ) =g(t)=g(lnx) ⇒  z^′  =(1/x)g^′ (lnx)  and z^(′′)  =−(1/x^2 )g^′ (lnx) +(1/x^2 ) g^(′′) (lnx)  (e) ⇒x^2 (−(1/x^2 ) g^′  +(1/x^2 ) g^(′′) ) +g^′   +(x^2  +v)g =0 ⇒  −g^′  +g^(′′)  +g^′  +(x^2  +v)g =0 ⇒g^(′′)  +(x^2  +v)g =0....

$${let}\:{put}\:{x}\:={e}^{{t}} \:\Rightarrow{z}\left({x}\right)\:={z}\left({e}^{{t}} \right)\:={g}\left({t}\right)={g}\left({lnx}\right)\:\Rightarrow \\ $$$${z}^{'} \:=\frac{\mathrm{1}}{{x}}{g}^{'} \left({lnx}\right)\:\:{and}\:{z}^{''} \:=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{g}^{'} \left({lnx}\right)\:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{g}^{''} \left({lnx}\right) \\ $$$$\left({e}\right)\:\Rightarrow{x}^{\mathrm{2}} \left(−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{g}^{'} \:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{g}^{''} \right)\:+{g}^{'} \:\:+\left({x}^{\mathrm{2}} \:+{v}\right){g}\:=\mathrm{0}\:\Rightarrow \\ $$$$−{g}^{'} \:+{g}^{''} \:+{g}^{'} \:+\left({x}^{\mathrm{2}} \:+{v}\right){g}\:=\mathrm{0}\:\Rightarrow{g}^{''} \:+\left({x}^{\mathrm{2}} \:+{v}\right){g}\:=\mathrm{0}.... \\ $$

Commented by Tawa1 last updated on 25/Jul/19

Sir, the final answer for number 1  ???

$$\mathrm{Sir},\:\mathrm{the}\:\mathrm{final}\:\mathrm{answer}\:\mathrm{for}\:\mathrm{number}\:\mathrm{1}\:\:??? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com