Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 64903 by naka3546 last updated on 23/Jul/19

1, 3, 7, 15, 30, 57, 103, x  What′s  x ?

1,3,7,15,30,57,103,xWhatsx?

Commented by Tony Lin last updated on 23/Jul/19

f(1)=1,f(2)=3,f(3)=7,f(4)=15  f(5)=30,f(6)=57,f(7)=103,f(8)=x  f(x)  =f(1)(((x−2)(x−3)(x−4)(x−5)(x−6)(x−7))/((1−2)(1−3)(1−4)(1−5)(1−6)(1−7)))  +f(2)(((x−1)(x−3)(x−4)(x−5)(x−6)(x−7))/((2−1)(2−3)(2−4)(2−5)(2−6)(2−7)))  +f(3)(((x−1)(x−2)(x−4)(x−5)(x−6)(x−7))/((3−1)(3−2)(3−4)(3−5)(3−6)(3−7)))  +f(4)(((x−1)(x−2)(x−3)(x−5)(x−6)(x−7))/((4−1)(4−2)(4−3)(4−5)(4−6)(4−7)))  +f(5)(((x−1)(x−2)(x−3)(x−4)(x−6)(x−7))/((5−1)(5−2)(5−3)(5−4)(5−6)(5−7)))  +f(6)(((x−1)(x−2)(x−3)(x−4)(x−5)(x−7))/((6−1)(6−2)(6−3)(6−4)(6−5)(6−7)))  +f(7)(((x−1)(x−2)(x−3)(x−4)(x−5)(x−6))/((7−1)(7−2)(7−3)(7−4)(7−5)(7−6)))  x  =f(8)  =1×((6×5×4×3×2×1)/((−1)(−2)(−3)(−4)(−5)(−6)))  +3×((7×5×4×3×2×1)/(1×(−1)(−2)(−3)(−4)(−5)))  +7×((7×6×4×3×2×1)/(2×1×(−1)(−2)(−3)(−4)))  +15×((7×6×5×3×2×1)/(3×2×1×(−1)(−2)(−3)))  +30×((7×6×5×4×2×1)/(4×3×2×1×(−1)(−2)))  +57×((7×6×5×4×3×1)/(5×4×3×2×1×(−1)))  +103×((7×6×5×4×3×2)/(6×5×4×3×2×1))  =1−21+147−525+1050−1197+721  =176

f(1)=1,f(2)=3,f(3)=7,f(4)=15f(5)=30,f(6)=57,f(7)=103,f(8)=xf(x)=f(1)(x2)(x3)(x4)(x5)(x6)(x7)(12)(13)(14)(15)(16)(17)+f(2)(x1)(x3)(x4)(x5)(x6)(x7)(21)(23)(24)(25)(26)(27)+f(3)(x1)(x2)(x4)(x5)(x6)(x7)(31)(32)(34)(35)(36)(37)+f(4)(x1)(x2)(x3)(x5)(x6)(x7)(41)(42)(43)(45)(46)(47)+f(5)(x1)(x2)(x3)(x4)(x6)(x7)(51)(52)(53)(54)(56)(57)+f(6)(x1)(x2)(x3)(x4)(x5)(x7)(61)(62)(63)(64)(65)(67)+f(7)(x1)(x2)(x3)(x4)(x5)(x6)(71)(72)(73)(74)(75)(76)x=f(8)=1×6×5×4×3×2×1(1)(2)(3)(4)(5)(6)+3×7×5×4×3×2×11×(1)(2)(3)(4)(5)+7×7×6×4×3×2×12×1×(1)(2)(3)(4)+15×7×6×5×3×2×13×2×1×(1)(2)(3)+30×7×6×5×4×2×14×3×2×1×(1)(2)+57×7×6×5×4×3×15×4×3×2×1×(1)+103×7×6×5×4×3×26×5×4×3×2×1=121+147525+10501197+721=176

Commented by MJS last updated on 23/Jul/19

generally it could be any number.  we′re interpreting it as  y=c_6 x^6 +c_5 x^5 +c_4 x^4 +c_3 x^3 +c_2 x^2 +c_1 x+c_0   with given pairs (x, y):  (1, 1)  (2, 3)  (3, 7)  (4, 15)  (5, 30)  (6, 57)  (7, 103)    but we can use any function with 7 unknown  constants  y=(1/(c_6 x^6 +c_5 x^5 +c_4 x^4 +c_3 x^3 +c_2 x^2 +c_1 x+c_0 ))  leads to ((3914)/(781))  y=(c_6 /x^6 )+(c_5 /x^5 )+(c_4 /x^4 )+(c_3 /x^3 )+(c_2 /x^2 )+(c_1 /x)+c_0   leads to ((43339367)/(262144))  y=(1/((c_6 /x^6 )+(c_5 /x^5 )+(c_4 /x^4 )+(c_3 /x^3 )+(c_2 /x^2 )+(c_1 /x)+c_0 ))  leads to ((1026031616)/(5937579))  we could also use  y=c_7 x^7 +c_6 x^6 +c_5 x^5 +c_4 x^4 +c_3 x^3 +c_2 x^2 +c_1 x+c_0   then we have one factor free to choose:  y=−((c_0 +2)/(5040))x^7 +((4c_0 +7)/(720))x^6 −((46c_0 +65)/(720))x^5 +((56c_0 +65)/(144))x^4 −((967c_0 +749)/(720))x^3 +((469c_0 +277)/(180))x^2 −((11(99c_0 −5))/(420))x+c_0   x=8  y=174−c_0   ⇒ any value fits

generallyitcouldbeanynumber.wereinterpretingitasy=c6x6+c5x5+c4x4+c3x3+c2x2+c1x+c0withgivenpairs(x,y):(1,1)(2,3)(3,7)(4,15)(5,30)(6,57)(7,103)butwecanuseanyfunctionwith7unknownconstantsy=1c6x6+c5x5+c4x4+c3x3+c2x2+c1x+c0leadsto3914781y=c6x6+c5x5+c4x4+c3x3+c2x2+c1x+c0leadsto43339367262144y=1c6x6+c5x5+c4x4+c3x3+c2x2+c1x+c0leadsto10260316165937579wecouldalsousey=c7x7+c6x6+c5x5+c4x4+c3x3+c2x2+c1x+c0thenwehaveonefactorfreetochoose:y=c0+25040x7+4c0+7720x646c0+65720x5+56c0+65144x4967c0+749720x3+469c0+277180x211(99c05)420x+c0x=8y=174c0anyvaluefits

Answered by MJS last updated on 23/Jul/19

1   3   7  15  30  57 103   176    2   4   8  15  27   46    73       2   4   7  12   19    27          2   3   5    7      8             1   2   2       1                1   0   −1                −1 −1

1371530571031762481527467324712192723578122110111

Commented by Tony Lin last updated on 23/Jul/19

What is the method ?

Whatisthemethod?

Commented by MJS last updated on 23/Jul/19

a                b                     c                 d...    b−a               c−b              d−c...            (c−b)−(b−a)           (d−c)−(c−b)...  ...  until you reach a line with each number of  the same value. then start at the bottom  adding this number once more and go up  from line to line. this gives the same result  as the polynomial approach  we can say  the 1^(st)  line is y  the 2^(nd)  line is △y  the 3^(rd)  line is △^2 y  the n^(th)  line is △^(n−1) y  it′s similar to the n^(th)  derivate of a polynome  of degree k. you reach the constant factor  after k steps

abcd...bacbdc...(cb)(ba)(dc)(cb)......untilyoureachalinewitheachnumberofthesamevalue.thenstartatthebottomaddingthisnumberoncemoreandgoupfromlinetoline.thisgivesthesameresultasthepolynomialapproachwecansaythe1stlineisythe2ndlineisythe3rdlineis2ythenthlineisn1yitssimilartothenthderivateofapolynomeofdegreek.youreachtheconstantfactorafterksteps

Commented by Tony Lin last updated on 23/Jul/19

is the method only be used on   condition that a,b,c,d are in A.P ?

isthemethodonlybeusedonconditionthata,b,c,dareinA.P?

Commented by MJS last updated on 23/Jul/19

no. write down any numbers, it always works  but you′ll only find polynomial solutions  1     1     2     3     5     8     13     29      0     1     1     2     3     5     16          1     0     1     1     2     11            −1   1     0     1     9                   2  −1    1    8                     −3   2     7                            5     5

no.writedownanynumbers,italwaysworksbutyoullonlyfindpolynomialsolutions112358132901123516101121111019211832755

Commented by Tony Lin last updated on 23/Jul/19

thanks sir .i got it.

thankssir.igotit.

Commented by MJS last updated on 23/Jul/19

you′re welcome

yourewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com