Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65004 by mathmax by abdo last updated on 24/Jul/19

let U_n = ∫_(1/n) ^(2/n)  Γ(x)Γ(1−x)dx    with n≥3  1) calculate and determine lim_(n→+∞)  U_n   2) study the convergence of Σ U_n

$${let}\:{U}_{{n}} =\:\int_{\frac{\mathrm{1}}{{n}}} ^{\frac{\mathrm{2}}{{n}}} \:\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right){dx}\:\:\:\:{with}\:{n}\geqslant\mathrm{3} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{and}\:{determine}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Commented by mathmax by abdo last updated on 24/Jul/19

1) we have Γ(x).Γ(1−x) =(π/(sin(πx))) ⇒U_n =∫_(1/n) ^(2/n)  (π/(sin(πx)))dx  =_(πx =t)     π ∫_(π/n) ^((2π)/n)    (dt/(π sint)) =∫_(π/n) ^((2π)/n)   (dt/(sint)) =_(tan((t/2))=u)     ∫_(tan((π/(2n)))) ^(tan((π/n)))   (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 ))  = ∫_(tan((π/(2n)))) ^(tan((π/n)))    (du/u) =[ln∣u∣]_(tan((π/(2n)))) ^(tan((π/n)))  =ln∣((tan((π/n)))/(tan((π/(2n)))))∣ ⇒ U_n =ln∣((tan((π/n)))/(tan((π/(2n)))))∣  we  have   tan((π/n)) ∼(π/n)   and tan((π/(2n))) ∼ (π/(2n))  ⇒  ((tan((π/n)))/(tan((π/(2n ))))) ∼(π/n) ((2n)/π) =2 ⇒lim_(n→+∞)   U_n =ln(2)  2) lim_(n→+∞)  U_n  ≠0  ⇒Σ U_n    diverges.

$$\left.\mathrm{1}\right)\:{we}\:{have}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:=\frac{\pi}{{sin}\left(\pi{x}\right)}\:\Rightarrow{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{\frac{\mathrm{2}}{{n}}} \:\frac{\pi}{{sin}\left(\pi{x}\right)}{dx} \\ $$$$=_{\pi{x}\:={t}} \:\:\:\:\pi\:\int_{\frac{\pi}{{n}}} ^{\frac{\mathrm{2}\pi}{{n}}} \:\:\:\frac{{dt}}{\pi\:{sint}}\:=\int_{\frac{\pi}{{n}}} ^{\frac{\mathrm{2}\pi}{{n}}} \:\:\frac{{dt}}{{sint}}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \:\:\:\:\int_{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)} ^{{tan}\left(\frac{\pi}{{n}}\right)} \:\:\frac{\mathrm{1}}{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\:\int_{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)} ^{{tan}\left(\frac{\pi}{{n}}\right)} \:\:\:\frac{{du}}{{u}}\:=\left[{ln}\mid{u}\mid\right]_{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)} ^{{tan}\left(\frac{\pi}{{n}}\right)} \:={ln}\mid\frac{{tan}\left(\frac{\pi}{{n}}\right)}{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)}\mid\:\Rightarrow\:{U}_{{n}} ={ln}\mid\frac{{tan}\left(\frac{\pi}{{n}}\right)}{{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)}\mid \\ $$$${we}\:\:{have}\:\:\:{tan}\left(\frac{\pi}{{n}}\right)\:\sim\frac{\pi}{{n}}\:\:\:{and}\:{tan}\left(\frac{\pi}{\mathrm{2}{n}}\right)\:\sim\:\frac{\pi}{\mathrm{2}{n}}\:\:\Rightarrow \\ $$$$\frac{{tan}\left(\frac{\pi}{{n}}\right)}{{tan}\left(\frac{\pi}{\mathrm{2}{n}\:}\right)}\:\sim\frac{\pi}{{n}}\:\frac{\mathrm{2}{n}}{\pi}\:=\mathrm{2}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} ={ln}\left(\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right)\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} \:\neq\mathrm{0}\:\:\Rightarrow\Sigma\:{U}_{{n}} \:\:\:{diverges}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com