All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 65004 by mathmax by abdo last updated on 24/Jul/19
letUn=∫1n2nΓ(x)Γ(1−x)dxwithn⩾31)calculateanddeterminelimn→+∞Un2)studytheconvergenceofΣUn
Commented by mathmax by abdo last updated on 24/Jul/19
1)wehaveΓ(x).Γ(1−x)=πsin(πx)⇒Un=∫1n2nπsin(πx)dx=πx=tπ∫πn2πndtπsint=∫πn2πndtsint=tan(t2)=u∫tan(π2n)tan(πn)12u1+u22du1+u2=∫tan(π2n)tan(πn)duu=[ln∣u∣]tan(π2n)tan(πn)=ln∣tan(πn)tan(π2n)∣⇒Un=ln∣tan(πn)tan(π2n)∣wehavetan(πn)∼πnandtan(π2n)∼π2n⇒tan(πn)tan(π2n)∼πn2nπ=2⇒limn→+∞Un=ln(2)2)limn→+∞Un≠0⇒ΣUndiverges.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com