Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65004 by mathmax by abdo last updated on 24/Jul/19

let U_n = ∫_(1/n) ^(2/n)  Γ(x)Γ(1−x)dx    with n≥3  1) calculate and determine lim_(n→+∞)  U_n   2) study the convergence of Σ U_n

letUn=1n2nΓ(x)Γ(1x)dxwithn31)calculateanddeterminelimn+Un2)studytheconvergenceofΣUn

Commented by mathmax by abdo last updated on 24/Jul/19

1) we have Γ(x).Γ(1−x) =(π/(sin(πx))) ⇒U_n =∫_(1/n) ^(2/n)  (π/(sin(πx)))dx  =_(πx =t)     π ∫_(π/n) ^((2π)/n)    (dt/(π sint)) =∫_(π/n) ^((2π)/n)   (dt/(sint)) =_(tan((t/2))=u)     ∫_(tan((π/(2n)))) ^(tan((π/n)))   (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 ))  = ∫_(tan((π/(2n)))) ^(tan((π/n)))    (du/u) =[ln∣u∣]_(tan((π/(2n)))) ^(tan((π/n)))  =ln∣((tan((π/n)))/(tan((π/(2n)))))∣ ⇒ U_n =ln∣((tan((π/n)))/(tan((π/(2n)))))∣  we  have   tan((π/n)) ∼(π/n)   and tan((π/(2n))) ∼ (π/(2n))  ⇒  ((tan((π/n)))/(tan((π/(2n ))))) ∼(π/n) ((2n)/π) =2 ⇒lim_(n→+∞)   U_n =ln(2)  2) lim_(n→+∞)  U_n  ≠0  ⇒Σ U_n    diverges.

1)wehaveΓ(x).Γ(1x)=πsin(πx)Un=1n2nπsin(πx)dx=πx=tππn2πndtπsint=πn2πndtsint=tan(t2)=utan(π2n)tan(πn)12u1+u22du1+u2=tan(π2n)tan(πn)duu=[lnu]tan(π2n)tan(πn)=lntan(πn)tan(π2n)Un=lntan(πn)tan(π2n)wehavetan(πn)πnandtan(π2n)π2ntan(πn)tan(π2n)πn2nπ=2limn+Un=ln(2)2)limn+Un0ΣUndiverges.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com