Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 65052 by AnjanDey last updated on 24/Jul/19

A.Evaluate:  (i)∫((sin x+cos x)/(9+16sin 2x))dx  (ii)∫((1+x^2 )/((1−x^2 )(√(1+x^2 +x^4 ))))dx  (iii)∫((x−1)/((x+1)(√(x^3 +x+x^2 ))))dx

A.Evaluate:(i)sinx+cosx9+16sin2xdx(ii)1+x2(1x2)1+x2+x4dx(iii)x1(x+1)x3+x+x2dx

Answered by MJS last updated on 24/Jul/19

(i)  ∫((sin x +cos x)/(9+16sin 2x))dx=       [t=2arctan x → dx=((2dt)/(t^2 +1))]  =−2∫((t^2 −2t−1)/((t^2 −8t+9)(9t^2 +8t+1)))dt=  =−18∫((t^2 −2t−1)/((t−4−(√7))(t−4+(√7))(9t+4−(√7))(9t+4+(√7))))dt=  =−(1/(40))∫(dt/(t−4−(√7)))−(1/(40))∫(dt/(t−4+(√7)))+(9/(40))∫(dt/(9t+4−(√7)))+(9/(40))∫(dt/(9t+4+(√7)))=  =−(1/(40))ln (t−4−(√7)) −(1/(40))ln (t−4+(√7)) +(1/(40))ln (9t+4−(√7)) +(1/(40))ln (9t+4+(√7)) =  =(1/(40))ln ((81t^2 +72t+9)/(t^2 −8t+9)) =(1/(40))ln 9((5−4(√2)cos (x+(π/4)))/(5+4(√2)cos (x+(π/4)))) =  =(1/(40))ln ∣((5−4(√2)cos (x+(π/4)))/(5+4(√2)cos (x+(π/4))))∣ +C

(i)sinx+cosx9+16sin2xdx=[t=2arctanxdx=2dtt2+1]=2t22t1(t28t+9)(9t2+8t+1)dt==18t22t1(t47)(t4+7)(9t+47)(9t+4+7)dt==140dtt47140dtt4+7+940dt9t+47+940dt9t+4+7==140ln(t47)140ln(t4+7)+140ln(9t+47)+140ln(9t+4+7)==140ln81t2+72t+9t28t+9=140ln9542cos(x+π4)5+42cos(x+π4)==140ln542cos(x+π4)5+42cos(x+π4)+C

Answered by MJS last updated on 24/Jul/19

(ii)  ∫((1+x^2 )/((1−x^2 )(√(1+x^2 +x^4 ))))dx=       [t=2arctan x → dx=((1+x^2 )/2)dt]  =(√2)∫(dt/(cos t (√(7+cos 2t))))=       [u=tan t → dt=cos^2  t du]  =∫(du/(√(3u^2 +4)))=((√3)/3)ln ((√3)u+(√(3u^2 +4))) =  =((√3)/3)ln ((2(√3)sin t +(√(14+2cos 2t)))/(2cos t)) =  =((√3)/3)ln (2(((√3)x+(√(x^4 +x^2 +1)))/(1−x^2 ))) =  =((√3)/3)ln ∣(((√3)x+(√(x^4 +x^2 +1)))/(1−x^2 ))∣ +C

(ii)1+x2(1x2)1+x2+x4dx=[t=2arctanxdx=1+x22dt]=2dtcost7+cos2t=[u=tantdt=cos2tdu]=du3u2+4=33ln(3u+3u2+4)==33ln23sint+14+2cos2t2cost==33ln(23x+x4+x2+11x2)==33ln3x+x4+x2+11x2+C

Answered by Tanmay chaudhury last updated on 25/Jul/19

1)∫((sinx+cosx)/(9+16(1−1+sin2x)))  ∫((d(sinx−cosx))/(9+16−16(1−sin2x)))  ∫((d(sinx−cosx))/(25−16(sinx−cosx)^2 ))  (1/(16))∫((d(sinx−cosx))/(((5/4))^2 −(sinx−cosx)^2 ))  (1/(16))×(1/(2×(5/4)))×ln((((5/4)+(sinx−cosx))/((5/4)−(sinx−cosx))))+c

1)sinx+cosx9+16(11+sin2x)d(sinxcosx)9+1616(1sin2x)d(sinxcosx)2516(sinxcosx)2116d(sinxcosx)(54)2(sinxcosx)2116×12×54×ln(54+(sinxcosx)54(sinxcosx))+c

Answered by Tanmay chaudhury last updated on 25/Jul/19

ii)∫(((1/x^2 )+1)/(((1/x)−x)(√((1/x^2 )+1+x^2 ))))dx  ∫((d(x−(1/x)))/(−(x−(1/x))(√((x−(1/x))^2 +3))))  x−(1/x)=(1/k)  d(x−(1/x))=−(1/k^2 )dk  ∫((−dk)/(k^2 ×((−1)/k)×(√((1/k^2 )+3))))  ∫(dk/(√(1+3k^2 )))  (1/(√3))∫(dk/(√(k^2 +(1/3))))  (1/(√3))×ln(k+(√(k^2 +(1/3))) )+c  (1/(√3))ln[(x−(1/x))+(√((x−(1/x))^2 +(1/3))) ]+c

ii)1x2+1(1xx)1x2+1+x2dxd(x1x)(x1x)(x1x)2+3x1x=1kd(x1x)=1k2dkdkk2×1k×1k2+3dk1+3k213dkk2+1313×ln(k+k2+13)+c13ln[(x1x)+(x1x)2+13]+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com