Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 65054 by behi83417@gmail.com last updated on 24/Jul/19

 { (((√(x+y))+(√(x−y))=a)),((x^2 +y^2 =b          [a,b∈R])) :}

{x+y+xy=ax2+y2=b[a,bR]

Commented by behi83417@gmail.com last updated on 24/Jul/19

thanks in advance proph. Abdo.  [u+v=a⇒u^2 +v^2 +2uv=a^2 ]please check.

thanksinadvanceproph.Abdo.[u+v=au2+v2+2uv=a2]pleasecheck.

Commented by mathmax by abdo last updated on 24/Jul/19

yes sir ...

yessir...

Answered by MJS last updated on 24/Jul/19

x+y≥0 ⇒ x≥−y  x−y≥0 ⇒ x≥y  ⇒ 0≤∣y∣≤x  ⇒ a≥0; b≥0    (√(x+y))+(√(x−y))=a ⇒ x=(y^2 /a^2 )+(a^2 /4)  ⇒ a≠0  x^2 +y^2 =b  y^4 +((3a^4 )/2)y^2 +((a^4 (a^4 −16b))/(16))=0  y^2 =−((3a^4 )/4)±((a^2 (√(2a^4 +4b)))/2)  y^2 ≥0 ⇒ y^2 =−((3a^4 )/4)+((a^2 (√(2a^4 +4b)))/2)  y=±(a/2)(√(−3a^2 +2(√(2a^4 +4b))))  ⇒ x=−(a^2 /2)+(1/2)(√(2a^4 +4b))

x+y0xyxy0xy0⩽∣y∣⩽xa0;b0x+y+xy=ax=y2a2+a24a0x2+y2=by4+3a42y2+a4(a416b)16=0y2=3a44±a22a4+4b2y20y2=3a44+a22a4+4b2y=±a23a2+22a4+4bx=a22+122a4+4b

Commented by MJS last updated on 24/Jul/19

if we allow y∈C  ⇒ y=±(a/2)(√(−3a^2 +2(√(2a^4 +4b)))) ∨ y=±i(a/2)(√(3a^2 +2(√(2a^4 +4b))))  ⇒ x=−(a^2 /2)+(1/2)(√(2a^4 +4b)) ∨ x=−(a^2 /2)−(1/2)(√(2a^4 +4b))

ifweallowyCy=±a23a2+22a4+4by=±ia23a2+22a4+4bx=a22+122a4+4bx=a22122a4+4b

Commented by MJS last updated on 24/Jul/19

you′re welcome, and thank you

yourewelcome,andthankyou

Commented by behi83417@gmail.com last updated on 24/Jul/19

thank you very much proph:MJS.  you have a great place in this forum and  also for me.god bless you sir.

thankyouverymuchproph:MJS.youhaveagreatplaceinthisforumandalsoforme.godblessyousir.

Answered by mr W last updated on 24/Jul/19

x+y=p  x−y=q  ⇒(√p)+(√q)=a>0  (x+y)^2 +(x−y)^2 =2(x^2 +y^2 )  ⇒p^2 +q^2 =2b  let P=(√p) ,Q=(√q)  P+Q=a⇒Q=a−P  P^4 +Q^4 =2b⇒P^4 +(a−P)^4 =2b  ⇒2P^4 −4aP^3 +6a^2 P^2 −4a^3 P+a^4 −2b=0  let λ=(P/a)  ⇒λ^4 −2λ^3 +3λ^2 −2λ+((1/2)−(b/a^4 ))=0  ⇒λ^4 −2λ^3 +3λ^2 −2λ+δ=0  ⇒λ_(1,2) =(1/2)[1±(√(4(√(1−δ))−3))]  ⇒λ_(2,3) =(1/2)[1±i(√(4(√(1−δ))+3))]  P_(1,2) =aλ=(a/2)[1±(√(4(√(1−δ))−3))]  Q_(1,2) =a−(a/2)[1±(√(4(√(1−δ))−3))]=(a/2)[1∓(√(4(√(1−δ))−3))]  P_(3,4) =aλ=(a/2)[1±i(√(4(√(1−δ))+3))]  Q_(3,4) =a−(a/2)[1±i(√(4(√(1−δ))+3))]=(a/2)[1∓i(√(4(√(1−δ))+3))]  x=((p+q)/2)=((P^2 +Q^2 )/2)  y=((p−q)/2)=((P^2 −Q^2 )/2)  ⇒x_(1,2) =(a^2 /8){[1±(√(4(√(1−δ))−3))]^2 +[1∓(√(4(√(1−δ))−3))]^2 }  ⇒x_(1,2) =(1/2)a^2 (2(√(1−δ))−1)  ⇒x_(1,2) =(1/2)[(√(2(a^4 +2b)))−a^2 ]  ⇒x_(3,4) =(a^2 /8){[1±i(√(4(√(1−δ))+3))]^2 +[1∓i(√(4(√(1−δ))+3))]^2 }  ⇒x_(3,4) =−(a^2 /2)(2(√(1−δ))+1)  ⇒x_(3,4) =−(1/2)[(√(2(a^4 +2b)))+a^2 ]  ⇒y_(1,2) =(a^2 /8){[1±(√(4(√(1−δ))−3))]^2 −[1∓(√(4(√(1−δ))−3))]^2 }  ⇒y_(1,2) =±(a^2 /2)(√(4(√(1−δ))−3))  ⇒y_(1,2) =±(a/2)(√(2(√(2(a^4 +2b)))−3a^2 ))  ⇒y_(3,4) =(a^2 /8){[1±i(√(4(√(1−δ))+3))]^2 −[1∓i(√(4(√(1−δ))+3))]^2 }  ⇒y_(3,4) =±((a^2 i)/2)(√(4(√(1−δ))+3))  ⇒y_(3,4) =±((ai)/2)(√(2(√(2(a^4 +2b)))+3a^2 ))

x+y=pxy=qp+q=a>0(x+y)2+(xy)2=2(x2+y2)p2+q2=2bletP=p,Q=qP+Q=aQ=aPP4+Q4=2bP4+(aP)4=2b2P44aP3+6a2P24a3P+a42b=0letλ=Paλ42λ3+3λ22λ+(12ba4)=0λ42λ3+3λ22λ+δ=0λ1,2=12[1±41δ3]λ2,3=12[1±i41δ+3]P1,2=aλ=a2[1±41δ3]Q1,2=aa2[1±41δ3]=a2[141δ3]P3,4=aλ=a2[1±i41δ+3]Q3,4=aa2[1±i41δ+3]=a2[1i41δ+3]x=p+q2=P2+Q22y=pq2=P2Q22x1,2=a28{[1±41δ3]2+[141δ3]2}x1,2=12a2(21δ1)x1,2=12[2(a4+2b)a2]x3,4=a28{[1±i41δ+3]2+[1i41δ+3]2}x3,4=a22(21δ+1)x3,4=12[2(a4+2b)+a2]y1,2=a28{[1±41δ3]2[141δ3]2}y1,2=±a2241δ3y1,2=±a222(a4+2b)3a2y3,4=a28{[1±i41δ+3]2[1i41δ+3]2}y3,4=±a2i241δ+3y3,4=±ai222(a4+2b)+3a2

Commented by behi83417@gmail.com last updated on 24/Jul/19

my master is coming!  thanks in advance dear master.  your answers don′t match with sir MJS′s.  where is the problem sir?

mymasteriscoming!thanksinadvancedearmaster.youranswersdontmatchwithsirMJSs.whereistheproblemsir?

Commented by mr W last updated on 25/Jul/19

they match sir. my answer just also  includes the complex roots.

theymatchsir.myanswerjustalsoincludesthecomplexroots.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com