Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 65062 by ajfour last updated on 24/Jul/19

If  x^4 +ax^2 +bx+c=0  ⇒ t^4 +At^2 +B=0  Find A and B.

$${If}\:\:{x}^{\mathrm{4}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$$\Rightarrow\:{t}^{\mathrm{4}} +{At}^{\mathrm{2}} +{B}=\mathrm{0} \\ $$$${Find}\:{A}\:{and}\:{B}. \\ $$

Commented by MJS last updated on 24/Jul/19

I once posted that matrix method by  Tschirnhaus... cannot find it right now,  must be somewhere on this forum  it should help in this case

$$\mathrm{I}\:\mathrm{once}\:\mathrm{posted}\:\mathrm{that}\:\mathrm{matrix}\:\mathrm{method}\:\mathrm{by} \\ $$$$\mathrm{Tschirnhaus}...\:\mathrm{cannot}\:\mathrm{find}\:\mathrm{it}\:\mathrm{right}\:\mathrm{now}, \\ $$$$\mathrm{must}\:\mathrm{be}\:\mathrm{somewhere}\:\mathrm{on}\:\mathrm{this}\:\mathrm{forum} \\ $$$$\mathrm{it}\:\mathrm{should}\:\mathrm{help}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case} \\ $$

Commented by MJS last updated on 24/Jul/19

found it: question 54775

$$\mathrm{found}\:\mathrm{it}:\:\mathrm{question}\:\mathrm{54775} \\ $$

Commented by MJS last updated on 24/Jul/19

you′ll have to adapt it to remove the linear  term but it looks possible

$$\mathrm{you}'\mathrm{ll}\:\mathrm{have}\:\mathrm{to}\:\mathrm{adapt}\:\mathrm{it}\:\mathrm{to}\:\mathrm{remove}\:\mathrm{the}\:\mathrm{linear} \\ $$$$\mathrm{term}\:\mathrm{but}\:\mathrm{it}\:\mathrm{looks}\:\mathrm{possible} \\ $$

Commented by MJS last updated on 25/Jul/19

...you also need to learn how to use the  method with a polynome of 4^(th)  degree...  maybe you can find something on the web

$$...\mathrm{you}\:\mathrm{also}\:\mathrm{need}\:\mathrm{to}\:\mathrm{learn}\:\mathrm{how}\:\mathrm{to}\:\mathrm{use}\:\mathrm{the} \\ $$$$\mathrm{method}\:\mathrm{with}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{degree}... \\ $$$$\mathrm{maybe}\:\mathrm{you}\:\mathrm{can}\:\mathrm{find}\:\mathrm{something}\:\mathrm{on}\:\mathrm{the}\:\mathrm{web} \\ $$

Commented by ajfour last updated on 25/Jul/19

MjS Sir, thanks for your  sincere suggestions and yes  my method is hopelessly  complicated..

$${MjS}\:{Sir},\:{thanks}\:{for}\:{your} \\ $$$${sincere}\:{suggestions}\:{and}\:{yes} \\ $$$${my}\:{method}\:{is}\:{hopelessly} \\ $$$${complicated}.. \\ $$

Answered by ajfour last updated on 26/Jul/19

let  x=((pt+q)/(t+1))  ⇒ p^4 t^4 +4p^3 qt^3 +6p^2 q^2 t^2 +4pq^3 t+q^4      +a(p^2 t^2 +2pqt+q^2 )(t^2 +2t+1)     +b(pt+q)(t^3 +3t^2 +3t+1)     +c(t^4 +4t^3 +6t^2 +4t+1)=0  ⇒   (p^4 +ap^2 +bp+c)t^4 +  (4p^3 q+2ap^2 +2apq+3bp+bq+4c)t^3   +(6p^2 q^2 +ap^2 +4apq+aq^2 +        3bp+3bq+6c)t^2 +  (4pq^3 +2apq+2aq^2 +bp+3bq+4c)t  +(q^4 +aq^2 +bq+c)=0    since coefficients of t^3  , t have  to be zero, ⇒  4p^3 q+2ap^2 +2apq+3bp+bq+4c=0           ....(I)  4pq^3 +2apq+2aq^2 +bp+3bq+4c=0          ....(II)  subtracting ⇒  2pq(p^2 −q^2 )+a(p^2 −q^2 )+b(p−q)=0  And as  p≠q , ⇒  2pq(p+q)+a(p+q)+b=0    ...(i)  Adding (I),(II)  2pq(p^2 +q^2 )+a(p^2 +q^2 )+2apq+    2b(p+q)+4c=0      .....(ii)    let  p+q=s , pq=m  transforming (i)&(ii)  ________________________  s(2m+a)+b=0       ....(A)  (2m+a)(s^2 −2m)+          2am+2bs+4c=0    ....(B)  ________________________  (A) ⇒    m=−(((as+b)/(2s)))  Substituting in (B)    −(b/s)(s^2 +((as+b)/s))−((a(as+b))/s)                    +2bs+4c=0  ⇒  ((b(as+b))/s^2 )+((a(as+b))/s)=bs+4c  ________________________  ⇒  bs^3 +(4c−a^2 )s^2 −2abs−b^2 =0     s is obtained from this eq.         m=−(((as+b)/(2s)))   p, q are then roots of quadratic       z^2 −sz+m=0  ________________________  Now   (p^4 +ap^2 +bp+c)t^4 +  +(6p^2 q^2 +ap^2 +4apq+aq^2 +        3bp+3bq+6c)t^2 +  +(q^4 +aq^2 +bq+c)=0  ⇒   t^4 +(((6p^2 q^2 +ap^2 +4apq+aq^2 +3bp+3bq+6c)/(p^4 +ap^2 +bp+c)))t^2      +((q^4 +aq^2 +bq+c)/(p^4 +ap^2 +bp+c)) = 0  t^4 +[((6p^2 q^2 +a(p+q)^2 +2apq+3b(p+q))/(p^4 +ap^2 +bp+c))]t^2      +((q^4 +aq^2 +bq+c)/(p^4 +ap^2 +bp++c)) = 0  ⇒ t^4 +[((6m^2 +as^2 +2am+3bs)/(f(p)))]t^2            +((f(q))/(f(p)))=0     x=((pt+q)/(t+1))  .

$${let}\:\:{x}=\frac{{pt}+{q}}{{t}+\mathrm{1}} \\ $$$$\Rightarrow\:{p}^{\mathrm{4}} {t}^{\mathrm{4}} +\mathrm{4}{p}^{\mathrm{3}} {qt}^{\mathrm{3}} +\mathrm{6}{p}^{\mathrm{2}} {q}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{4}{pq}^{\mathrm{3}} {t}+{q}^{\mathrm{4}} \\ $$$$\:\:\:+{a}\left({p}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{2}{pqt}+{q}^{\mathrm{2}} \right)\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}\right) \\ $$$$\:\:\:+{b}\left({pt}+{q}\right)\left({t}^{\mathrm{3}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}+\mathrm{1}\right) \\ $$$$\:\:\:+{c}\left({t}^{\mathrm{4}} +\mathrm{4}{t}^{\mathrm{3}} +\mathrm{6}{t}^{\mathrm{2}} +\mathrm{4}{t}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\:\left({p}^{\mathrm{4}} +{ap}^{\mathrm{2}} +{bp}+{c}\right){t}^{\mathrm{4}} + \\ $$$$\left(\mathrm{4}{p}^{\mathrm{3}} {q}+\mathrm{2}{ap}^{\mathrm{2}} +\mathrm{2}{apq}+\mathrm{3}{bp}+{bq}+\mathrm{4}{c}\right){t}^{\mathrm{3}} \\ $$$$+\left(\mathrm{6}{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{ap}^{\mathrm{2}} +\mathrm{4}{apq}+{aq}^{\mathrm{2}} +\right. \\ $$$$\left.\:\:\:\:\:\:\mathrm{3}{bp}+\mathrm{3}{bq}+\mathrm{6}{c}\right){t}^{\mathrm{2}} + \\ $$$$\left(\mathrm{4}{pq}^{\mathrm{3}} +\mathrm{2}{apq}+\mathrm{2}{aq}^{\mathrm{2}} +{bp}+\mathrm{3}{bq}+\mathrm{4}{c}\right){t} \\ $$$$+\left({q}^{\mathrm{4}} +{aq}^{\mathrm{2}} +{bq}+{c}\right)=\mathrm{0} \\ $$$$ \\ $$$${since}\:{coefficients}\:{of}\:{t}^{\mathrm{3}} \:,\:{t}\:{have} \\ $$$${to}\:{be}\:{zero},\:\Rightarrow \\ $$$$\mathrm{4}{p}^{\mathrm{3}} {q}+\mathrm{2}{ap}^{\mathrm{2}} +\mathrm{2}{apq}+\mathrm{3}{bp}+{bq}+\mathrm{4}{c}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:....\left({I}\right) \\ $$$$\mathrm{4}{pq}^{\mathrm{3}} +\mathrm{2}{apq}+\mathrm{2}{aq}^{\mathrm{2}} +{bp}+\mathrm{3}{bq}+\mathrm{4}{c}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:....\left({II}\right) \\ $$$${subtracting}\:\Rightarrow \\ $$$$\mathrm{2}{pq}\left({p}^{\mathrm{2}} −{q}^{\mathrm{2}} \right)+{a}\left({p}^{\mathrm{2}} −{q}^{\mathrm{2}} \right)+{b}\left({p}−{q}\right)=\mathrm{0} \\ $$$${And}\:{as}\:\:{p}\neq{q}\:,\:\Rightarrow \\ $$$$\mathrm{2}{pq}\left({p}+{q}\right)+{a}\left({p}+{q}\right)+{b}=\mathrm{0}\:\:\:\:...\left({i}\right) \\ $$$${Adding}\:\left({I}\right),\left({II}\right) \\ $$$$\mathrm{2}{pq}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)+{a}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)+\mathrm{2}{apq}+ \\ $$$$\:\:\mathrm{2}{b}\left({p}+{q}\right)+\mathrm{4}{c}=\mathrm{0}\:\:\:\:\:\:.....\left({ii}\right) \\ $$$$ \\ $$$${let}\:\:{p}+{q}={s}\:,\:{pq}={m} \\ $$$${transforming}\:\left({i}\right)\&\left({ii}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${s}\left(\mathrm{2}{m}+{a}\right)+{b}=\mathrm{0}\:\:\:\:\:\:\:....\left({A}\right) \\ $$$$\left(\mathrm{2}{m}+{a}\right)\left({s}^{\mathrm{2}} −\mathrm{2}{m}\right)+ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}{am}+\mathrm{2}{bs}+\mathrm{4}{c}=\mathrm{0}\:\:\:\:....\left({B}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\left({A}\right)\:\Rightarrow\:\:\:\:{m}=−\left(\frac{{as}+{b}}{\mathrm{2}{s}}\right) \\ $$$${Substituting}\:{in}\:\left({B}\right) \\ $$$$\:\:−\frac{{b}}{{s}}\left({s}^{\mathrm{2}} +\frac{{as}+{b}}{{s}}\right)−\frac{{a}\left({as}+{b}\right)}{{s}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2}{bs}+\mathrm{4}{c}=\mathrm{0} \\ $$$$\Rightarrow\:\:\frac{{b}\left({as}+{b}\right)}{{s}^{\mathrm{2}} }+\frac{{a}\left({as}+{b}\right)}{{s}}={bs}+\mathrm{4}{c} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\Rightarrow\:\:{bs}^{\mathrm{3}} +\left(\mathrm{4}{c}−{a}^{\mathrm{2}} \right){s}^{\mathrm{2}} −\mathrm{2}{abs}−{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:{s}\:{is}\:{obtained}\:{from}\:{this}\:{eq}. \\ $$$$\:\:\:\:\:\:\:{m}=−\left(\frac{{as}+{b}}{\mathrm{2}{s}}\right) \\ $$$$\:{p},\:{q}\:{are}\:{then}\:{roots}\:{of}\:{quadratic} \\ $$$$\:\:\:\:\:{z}^{\mathrm{2}} −{sz}+{m}=\mathrm{0} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${Now} \\ $$$$\:\left({p}^{\mathrm{4}} +{ap}^{\mathrm{2}} +{bp}+{c}\right){t}^{\mathrm{4}} + \\ $$$$+\left(\mathrm{6}{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{ap}^{\mathrm{2}} +\mathrm{4}{apq}+{aq}^{\mathrm{2}} +\right. \\ $$$$\left.\:\:\:\:\:\:\mathrm{3}{bp}+\mathrm{3}{bq}+\mathrm{6}{c}\right){t}^{\mathrm{2}} + \\ $$$$+\left({q}^{\mathrm{4}} +{aq}^{\mathrm{2}} +{bq}+{c}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\:{t}^{\mathrm{4}} +\left(\frac{\mathrm{6}{p}^{\mathrm{2}} {q}^{\mathrm{2}} +{ap}^{\mathrm{2}} +\mathrm{4}{apq}+{aq}^{\mathrm{2}} +\mathrm{3}{bp}+\mathrm{3}{bq}+\mathrm{6}{c}}{{p}^{\mathrm{4}} +{ap}^{\mathrm{2}} +{bp}+{c}}\right){t}^{\mathrm{2}} \\ $$$$\:\:\:+\frac{{q}^{\mathrm{4}} +{aq}^{\mathrm{2}} +{bq}+{c}}{{p}^{\mathrm{4}} +{ap}^{\mathrm{2}} +{bp}+{c}}\:=\:\mathrm{0} \\ $$$$\boldsymbol{{t}}^{\mathrm{4}} +\left[\frac{\mathrm{6}\boldsymbol{{p}}^{\mathrm{2}} \boldsymbol{{q}}^{\mathrm{2}} +\boldsymbol{{a}}\left(\boldsymbol{{p}}+\boldsymbol{{q}}\right)^{\mathrm{2}} +\mathrm{2}\boldsymbol{{apq}}+\mathrm{3}\boldsymbol{{b}}\left(\boldsymbol{{p}}+\boldsymbol{{q}}\right)}{\boldsymbol{{p}}^{\mathrm{4}} +\boldsymbol{{ap}}^{\mathrm{2}} +\boldsymbol{{bp}}+\boldsymbol{{c}}}\right]\boldsymbol{{t}}^{\mathrm{2}} \\ $$$$\:\:\:+\frac{\boldsymbol{{q}}^{\mathrm{4}} +\boldsymbol{{aq}}^{\mathrm{2}} +\boldsymbol{{bq}}+\boldsymbol{{c}}}{\boldsymbol{{p}}^{\mathrm{4}} +\boldsymbol{{ap}}^{\mathrm{2}} +\boldsymbol{{bp}}++\boldsymbol{{c}}}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{t}^{\mathrm{4}} +\left[\frac{\mathrm{6}{m}^{\mathrm{2}} +{as}^{\mathrm{2}} +\mathrm{2}{am}+\mathrm{3}{bs}}{{f}\left({p}\right)}\right]{t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:+\frac{{f}\left({q}\right)}{{f}\left({p}\right)}=\mathrm{0} \\ $$$$\:\:\:{x}=\frac{{pt}+{q}}{{t}+\mathrm{1}}\:\:.\:\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com