Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65092 by mathmax by abdo last updated on 25/Jul/19

calculate  ∫  (1/(x cosx))Π_(i=1) ^n (1−tan^2 ((x/2^i )))dx

$${calculate}\:\:\int\:\:\frac{\mathrm{1}}{{x}\:{cosx}}\prod_{{i}=\mathrm{1}} ^{{n}} \left(\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}^{{i}} }\right)\right){dx} \\ $$

Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19

let call it F_n (x).And  P_n (x)=Π_(i=1) ^n (1−tan^2 ((x/2^i )))  we know that ∀ i=1.....n   1−tan^2 ((x/2^i ))=((2tan((x/2^i )))/(tan(2.(x/2^i ))))  so  P_n (x)=2_ ^n  Π_(i=1) ^n  (((tan((x/2^i )))/(tan((x/2^(i−1) )))))=((2^n tan((x/2^n )))/(tanx))  then   F_n (x)=∫ (((2^(n ) tan((x/2^n )))/(xsinx)))dx  =? ( i am trying.....  But  F_∞ (x)=∫(1/(xcosx))P_∞ (x)dx   is solvable with P_∞ (x)=lim_∞  P_n (x)=(x/(tanx))  then  F_∞ (x)=∫  (1/(xcosx)).(x/(tanx))dx=∫ (1/(sinx))dx=∫ ((cos^2 ((x/2))+sin^2 ((x/2)))/(2sin((x/2))cos((x/2)))) dx           =∫  (((1/2)cos((x/2)))/(sin((x/2)))) + (((1/2)sin((x/2)))/(cos((x/2)))) dx=ln∣tan((x/2))∣ +c       c∈R

$${let}\:{call}\:{it}\:{F}_{{n}} \left({x}\right).{And}\:\:{P}_{{n}} \left({x}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}^{{i}} }\right)\right) \\ $$$${we}\:{know}\:{that}\:\forall\:{i}=\mathrm{1}.....{n}\:\:\:\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}^{{i}} }\right)=\frac{\mathrm{2}{tan}\left(\frac{{x}}{\mathrm{2}^{{i}} }\right)}{{tan}\left(\mathrm{2}.\frac{{x}}{\mathrm{2}^{{i}} }\right)} \\ $$$${so}\:\:{P}_{{n}} \left({x}\right)=\mathrm{2}_{} ^{{n}} \:\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\:\left(\frac{{tan}\left(\frac{{x}}{\mathrm{2}^{{i}} }\right)}{{tan}\left(\frac{{x}}{\mathrm{2}^{{i}−\mathrm{1}} }\right)}\right)=\frac{\mathrm{2}^{{n}} {tan}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}{{tanx}} \\ $$$${then}\:\:\:{F}_{{n}} \left({x}\right)=\int\:\left(\frac{\mathrm{2}^{{n}\:} {tan}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}{{xsinx}}\right){dx}\:\:=?\:\left(\:{i}\:{am}\:{trying}.....\right. \\ $$$${But}\:\:{F}_{\infty} \left({x}\right)=\int\frac{\mathrm{1}}{{xcosx}}{P}_{\infty} \left({x}\right){dx}\:\:\:{is}\:{solvable}\:{with}\:{P}_{\infty} \left({x}\right)={li}\underset{\infty} {{m}}\:{P}_{{n}} \left({x}\right)=\frac{{x}}{{tanx}} \\ $$$${then} \\ $$$${F}_{\infty} \left({x}\right)=\int\:\:\frac{\mathrm{1}}{{xcosx}}.\frac{{x}}{{tanx}}{dx}=\int\:\frac{\mathrm{1}}{{sinx}}{dx}=\int\:\frac{{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)+{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:=\int\:\:\frac{\frac{\mathrm{1}}{\mathrm{2}}{cos}\left(\frac{{x}}{\mathrm{2}}\right)}{{sin}\left(\frac{{x}}{\mathrm{2}}\right)}\:+\:\frac{\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{{cos}\left(\frac{{x}}{\mathrm{2}}\right)}\:{dx}={ln}\mid{tan}\left(\frac{{x}}{\mathrm{2}}\right)\mid\:+{c}\:\:\:\:\:\:\:{c}\in\mathbb{R} \\ $$

Commented by Prithwish sen last updated on 25/Jul/19

From  P_n (x) =((2^n tan((x/2^n )))/(tanx)) = ((2^n sin(x/2^n ))/(cos(x/2^n )tanx)) = (1/(cos(x/2^n )))Π_(k=1) ^n (1/(cos(x/2^k )))  Now if n→∞  we know x𝚷_(k=1) ^∞ cos(x/2^k ) = sinx  i.e P_n (x) = (x/(sinx)) as n→∞  ∴ the integral becomes 2∫(dx/(sin2x))= 2ln∣tanx∣+C  Sir please check.

$$\mathrm{From} \\ $$$$\mathrm{P}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\frac{\mathrm{2}^{\mathrm{n}} \mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{n}} }\right)}{\mathrm{tanx}}\:=\:\frac{\mathrm{2}^{\mathrm{n}} \mathrm{sin}\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{n}} }}{\mathrm{cos}\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{n}} }\mathrm{tanx}}\:=\:\frac{\mathrm{1}}{\mathrm{cos}\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{n}} }}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\frac{\mathrm{1}}{\mathrm{cos}\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{k}} }} \\ $$$$\mathrm{Now}\:\mathrm{if}\:\mathrm{n}\rightarrow\infty\:\:\mathrm{we}\:\mathrm{know}\:\boldsymbol{\mathrm{x}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\prod}}\mathrm{cos}}\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}^{\boldsymbol{\mathrm{k}}} }\:=\:\boldsymbol{\mathrm{sinx}} \\ $$$$\mathrm{i}.\mathrm{e}\:\boldsymbol{\mathrm{P}}_{\mathrm{n}} \left(\boldsymbol{\mathrm{x}}\right)\:=\:\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{sinx}}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{n}}\rightarrow\infty \\ $$$$\therefore\:\mathrm{the}\:\mathrm{integral}\:\mathrm{becomes}\:\mathrm{2}\int\frac{\mathrm{dx}}{\mathrm{sin2x}}=\:\mathrm{2ln}\mid\mathrm{tanx}\mid+\mathrm{C} \\ $$$$\mathrm{Sir}\:\mathrm{please}\:\mathrm{check}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com