Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65100 by arcana last updated on 25/Jul/19

∫_0 ^π (dθ/((a+cosθ)^2 )), a>1

$$\int_{\mathrm{0}} ^{\pi} \frac{{d}\theta}{\left({a}+{cos}\theta\right)^{\mathrm{2}} },\:{a}>\mathrm{1} \\ $$

Commented by~ À ® @ 237 ~ last updated on 25/Jul/19

let  g(a)=∫_0 ^π (dθ/(a+cosθ ))   then  ∫_0 ^π (dθ/((a+cosθ)^2 ))=−(dg/(da  ))      so let find g(a)  g(a)=∫_0 ^π (dθ/((a−1)+2cos^2 ((θ/2))))=∫_0 ^(π/2) ((2dx)/((a−1)[cos^2 x+sin^2 x]+2cos^2 x))=2∫_0 ^(π/2) (dx/((a+1)cos^2 x +(a−1)sin^2 x))  then  ((g(a))/2)= ∫_0 ^(π/2)  (((1/(cos^2 x)) dx)/((a+1)+(a−1)tan^2 x))   we have a>1⇒(a+1)+(a−1)tan^2 x=(a+1)[1+((√((a−1)/(a+1)))tanx)^2 ]  ((g(a))/2)=(1/(√(a^2 −1)))∫_0 ^(π/2)    (((√((a−1)/(a+1))) (1+tan^2 x) dx)/(1+((√(((a−1)/(a+1)) )) tanx)^2 ))          So   we get  g(a)=(2/(√(a^2 −1))) [arctan((√(((a−1)/(a+1))  )) tanx)]_0 ^(π/2) = (π/(√(a^2 −1)))   then  (dg/da)=π.((((−2a)/(2(√(a^2 −1))))/(a^2 −1)))= ((−πa)/((a^2 −1)^(3/2) ))    that leads us to  ∫_(0 ) ^π  (dθ/((a+cosθ)^2 )) = ((πa)/((a^2 −1)^(3/2) ))

$${let}\:\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\pi} \frac{{d}\theta}{{a}+{cos}\theta\:}\:\:\:{then}\:\:\int_{\mathrm{0}} ^{\pi} \frac{{d}\theta}{\left({a}+{cos}\theta\right)^{\mathrm{2}} }=−\frac{{dg}}{{da}\:\:}\:\:\:\:\:\:{so}\:{let}\:{find}\:{g}\left({a}\right) \\ $$ $${g}\left({a}\right)=\int_{\mathrm{0}} ^{\pi} \frac{{d}\theta}{\left({a}−\mathrm{1}\right)+\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{dx}}{\left({a}−\mathrm{1}\right)\left[{cos}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {x}\right]+\mathrm{2}{cos}^{\mathrm{2}} {x}}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\left({a}+\mathrm{1}\right){cos}^{\mathrm{2}} {x}\:+\left({a}−\mathrm{1}\right){sin}^{\mathrm{2}} {x}} \\ $$ $${then} \\ $$ $$\frac{{g}\left({a}\right)}{\mathrm{2}}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}\:{dx}}{\left({a}+\mathrm{1}\right)+\left({a}−\mathrm{1}\right){tan}^{\mathrm{2}} {x}}\: \\ $$ $${we}\:{have}\:{a}>\mathrm{1}\Rightarrow\left({a}+\mathrm{1}\right)+\left({a}−\mathrm{1}\right){tan}^{\mathrm{2}} {x}=\left({a}+\mathrm{1}\right)\left[\mathrm{1}+\left(\sqrt{\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}}{tanx}\right)^{\mathrm{2}} \right] \\ $$ $$\frac{{g}\left({a}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{\sqrt{\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}}\:\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)\:{dx}}{\mathrm{1}+\left(\sqrt{\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}\:}\:{tanx}\right)^{\mathrm{2}} } \\ $$ $$\:\:\:\:\:\:\:\:{So}\:\:\:{we}\:{get} \\ $$ $${g}\left({a}\right)=\frac{\mathrm{2}}{\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:\left[{arctan}\left(\sqrt{\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}\:\:}\:{tanx}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\:\frac{\pi}{\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\: \\ $$ $${then}\:\:\frac{{dg}}{{da}}=\pi.\left(\frac{\frac{−\mathrm{2}{a}}{\mathrm{2}\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}}{{a}^{\mathrm{2}} −\mathrm{1}}\right)=\:\frac{−\pi{a}}{\left({a}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$ $$ \\ $$ $${that}\:{leads}\:{us}\:{to} \\ $$ $$\int_{\mathrm{0}\:} ^{\pi} \:\frac{{d}\theta}{\left({a}+{cos}\theta\right)^{\mathrm{2}} }\:=\:\frac{\pi{a}}{\left({a}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:\: \\ $$

Commented byturbo msup by abdo last updated on 25/Jul/19

let ϕ(a) =∫_0 ^π (dθ/(a+cosθ)) we have  ϕ^′ (a)=−∫_0 ^π   (dθ/((a+cosθ)^2 )) ⇒  ∫_0 ^π   (dθ/((a+cosθ)^2 )) =−ϕ^′ (a)  ϕ(a) =_(tan((θ/2))=x)   ∫_0 ^∞   (1/(a+((1−x^2 )/(1+x^2 )))) ((2dx)/(1+x^2 ))  =∫_0 ^∞    ((2dx)/(a+ax^2  +1−x^2 )) =∫_0 ^∞   ((2dx)/((a−1)x^2 +a+1))  =(2/(a−1)) ∫_0 ^∞    (dx/(x^2  +((a+1)/(a−1))))  =_(x =(√((a+1)/(a−1)))u)  (2/(a−1)) ∫_0 ^∞   (1/(((a+1)/(a−1))(1+u^2 )))(√((a+1)/(a−1)))du  =(2/(a+1)) ((√(a+1))/(√(a−1))) ∫_0 ^∞  (du/(1+u^2 ))  =(2/(√(a^2 −1))) (π/2) =(π/(√(a^2 −1))) ⇒  ϕ^′ (a) =π{(a^2 −1)^(−(1/2)) }^′   =π(−(1/2))(2a)(a^2 −1)^(−(3/2))   =((−πa)/((a^2 −1)(√(a^2 −1)))) ⇒  ∫_0 ^π   (dθ/((a+cosθ)^2 )) =((πa)/((a^2 −1)(√(a^2 −1))))  if a>1

$${let}\:\varphi\left({a}\right)\:=\overset{\pi} {\int}_{\mathrm{0}} \frac{{d}\theta}{{a}+{cos}\theta}\:{we}\:{have} \\ $$ $$\varphi^{'} \left({a}\right)=−\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{\left({a}+{cos}\theta\right)^{\mathrm{2}} }\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{\left({a}+{cos}\theta\right)^{\mathrm{2}} }\:=−\varphi^{'} \left({a}\right) \\ $$ $$\varphi\left({a}\right)\:=_{{tan}\left(\frac{\theta}{\mathrm{2}}\right)={x}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{a}+\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{dx}}{{a}+{ax}^{\mathrm{2}} \:+\mathrm{1}−{x}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{dx}}{\left({a}−\mathrm{1}\right){x}^{\mathrm{2}} +{a}+\mathrm{1}} \\ $$ $$=\frac{\mathrm{2}}{{a}−\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}} \\ $$ $$=_{{x}\:=\sqrt{\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}}{u}} \:\frac{\mathrm{2}}{{a}−\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\sqrt{\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}}{du} \\ $$ $$=\frac{\mathrm{2}}{{a}+\mathrm{1}}\:\frac{\sqrt{{a}+\mathrm{1}}}{\sqrt{{a}−\mathrm{1}}}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$ $$=\frac{\mathrm{2}}{\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:\frac{\pi}{\mathrm{2}}\:=\frac{\pi}{\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:\Rightarrow \\ $$ $$\varphi^{'} \left({a}\right)\:=\pi\left\{\left({a}^{\mathrm{2}} −\mathrm{1}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \right\}^{'} \\ $$ $$=\pi\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{2}{a}\right)\left({a}^{\mathrm{2}} −\mathrm{1}\right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$ $$=\frac{−\pi{a}}{\left({a}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{\left({a}+{cos}\theta\right)^{\mathrm{2}} }\:=\frac{\pi{a}}{\left({a}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}} \\ $$ $${if}\:{a}>\mathrm{1} \\ $$ $$ \\ $$

Commented byarcana last updated on 25/Jul/19

Gracias

$$\mathrm{Gracias} \\ $$

Commented byarcana last updated on 25/Jul/19

Gracias

$$\mathrm{Gracias} \\ $$

Commented byturbo msup by abdo last updated on 25/Jul/19

where are you from arcana...

$${where}\:{are}\:{you}\:{from}\:{arcana}... \\ $$

Commented byarcana last updated on 25/Jul/19

Colombia but i can understand coments.  Muchas gracias

$$\mathrm{Colombia}\:\mathrm{but}\:\mathrm{i}\:\mathrm{can}\:\mathrm{understand}\:\mathrm{coments}. \\ $$ $$\mathrm{Muchas}\:\mathrm{gracias} \\ $$

Commented bymathmax by abdo last updated on 25/Jul/19

you are most welcome in that platform...

$${you}\:{are}\:{most}\:{welcome}\:{in}\:{that}\:{platform}... \\ $$

Commented byarcana last updated on 26/Jul/19

de nuevo gracias

$$\mathrm{de}\:\mathrm{nuevo}\:\mathrm{gracias} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com