Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 6512 by Rasheed Soomro last updated on 30/Jun/16

Find complex number whose additive   inverse is equal to its multiplicative  inverse.

$${Find}\:{complex}\:{number}\:{whose}\:{additive}\: \\ $$$${inverse}\:{is}\:{equal}\:{to}\:{its}\:{multiplicative} \\ $$$${inverse}. \\ $$

Commented by Temp last updated on 30/Jun/16

What is additive and multiplicitive  inverse?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{additive}\:\mathrm{and}\:\mathrm{multiplicitive} \\ $$$$\mathrm{inverse}? \\ $$

Commented by Rasheed Soomro last updated on 30/Jun/16

−(a,b)=(−a,−b)  and   (a,b)^(−1) =((a/(a^2 +b^2 )),((−b)/(a^2 +b^2 )))  (a,b) is a complex number a+ib  −(a,b)  means additive inverse of (a,b)  (a,b)^(−1)  means multiplicative inverse of (a,b).  Do you want to ask definitions of “additive inverse”  and  “multiplicative inverse”?

$$−\left({a},{b}\right)=\left(−{a},−{b}\right)\:\:{and}\:\:\:\left({a},{b}\right)^{−\mathrm{1}} =\left(\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} },\frac{−{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right) \\ $$$$\left({a},{b}\right)\:{is}\:{a}\:{complex}\:{number}\:{a}+{ib} \\ $$$$−\left({a},{b}\right)\:\:{means}\:{additive}\:{inverse}\:{of}\:\left({a},{b}\right) \\ $$$$\left({a},{b}\right)^{−\mathrm{1}} \:{means}\:{multiplicative}\:{inverse}\:{of}\:\left({a},{b}\right). \\ $$$${Do}\:{you}\:{want}\:{to}\:{ask}\:{definitions}\:{of}\:``{additive}\:{inverse}'' \\ $$$${and}\:\:``{multiplicative}\:{inverse}''? \\ $$

Answered by Yozzii last updated on 30/Jun/16

Let z=a+bi, with a,b∈R and z≠0.  ⇒additive inverse of z is w=−a−bi=−z  since z+w=0 and 0 is the additive identity.  Multiplicative inverse of z is t such  that zt=1 and 1 is multiplicative identity.  ∴t=(1/z)=(1/(a+bi))=((a−bi)/(a^2 +b^2 ))=(a/(a^2 +b^2 ))−(b/(a^2 +b^2 ))i  If t=w then  −a−bi=(a/(a^2 +b^2 ))−(b/(a^2 +b^2 ))i         (∗)  Equating the real parts of (∗)  ⇒−a=(a/(a^2 +b^2 ))⇒a((1/(a^2 +b^2 ))+1)=0  Since a,b∈R⇒a=0 and (1/(a^2 +b^2 ))+1≠0.  Equating the imaginary parts of (∗)  gives −b=((−b)/(a^2 +b^2 ))  Since a=0 & z≠0⇒b≠0  ⇒1=(1/(0+b^2 ))⇒b=±1.  ∴z=±i.

$${Let}\:{z}={a}+{bi},\:{with}\:{a},{b}\in\mathbb{R}\:{and}\:{z}\neq\mathrm{0}. \\ $$$$\Rightarrow{additive}\:{inverse}\:{of}\:{z}\:{is}\:{w}=−{a}−{bi}=−{z} \\ $$$${since}\:{z}+{w}=\mathrm{0}\:{and}\:\mathrm{0}\:{is}\:{the}\:{additive}\:{identity}. \\ $$$${Multiplicative}\:{inverse}\:{of}\:{z}\:{is}\:{t}\:{such} \\ $$$${that}\:{zt}=\mathrm{1}\:{and}\:\mathrm{1}\:{is}\:{multiplicative}\:{identity}. \\ $$$$\therefore{t}=\frac{\mathrm{1}}{{z}}=\frac{\mathrm{1}}{{a}+{bi}}=\frac{{a}−{bi}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\frac{{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{i} \\ $$$${If}\:{t}={w}\:{then} \\ $$$$−{a}−{bi}=\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\frac{{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{i}\:\:\:\:\:\:\:\:\:\left(\ast\right) \\ $$$${Equating}\:{the}\:{real}\:{parts}\:{of}\:\left(\ast\right) \\ $$$$\Rightarrow−{a}=\frac{{a}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\Rightarrow{a}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\mathrm{1}\right)=\mathrm{0} \\ $$$${Since}\:{a},{b}\in\mathbb{R}\Rightarrow{a}=\mathrm{0}\:{and}\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\mathrm{1}\neq\mathrm{0}. \\ $$$${Equating}\:{the}\:{imaginary}\:{parts}\:{of}\:\left(\ast\right) \\ $$$${gives}\:−{b}=\frac{−{b}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${Since}\:{a}=\mathrm{0}\:\&\:{z}\neq\mathrm{0}\Rightarrow{b}\neq\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}=\frac{\mathrm{1}}{\mathrm{0}+{b}^{\mathrm{2}} }\Rightarrow{b}=\pm\mathrm{1}. \\ $$$$\therefore{z}=\pm{i}. \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 30/Jun/16

THαnX!

$$\mathcal{TH}\alpha{n}\mathcal{X}! \\ $$

Answered by Rasheed Soomro last updated on 01/Jul/16

Simple method  Let  the required complex number is z  According to the codition     −z=(1/z) ⇒ −z^2 =1 ⇒ z^2 =−1 ⇒ z=±(√(−1))=±i

$${Simple}\:{method} \\ $$$${Let}\:\:{the}\:{required}\:{complex}\:{number}\:{is}\:{z} \\ $$$${According}\:{to}\:{the}\:{codition} \\ $$$$\:\:\:−{z}=\frac{\mathrm{1}}{{z}}\:\Rightarrow\:−{z}^{\mathrm{2}} =\mathrm{1}\:\Rightarrow\:{z}^{\mathrm{2}} =−\mathrm{1}\:\Rightarrow\:{z}=\pm\sqrt{−\mathrm{1}}=\pm{i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com