Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65133 by turbo msup by abdo last updated on 25/Jul/19

find f(x)=∫_0 ^(π/4) ln(sint +xcost)dt  x real.

findf(x)=0π4ln(sint+xcost)dtxreal.

Commented by mathmax by abdo last updated on 27/Jul/19

we have f^′ (x) =∫_0 ^(π/4) ((cost)/(sint +xcost))dt changement tan((t/2)) =u give  f^′ (x) = ∫_0 ^((√2)−1)    (((1−u^2 )/(1+u^2 ))/(((2u)/(1+u^2 )) +x((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 )) =2∫_0 ^((√2)−1)   ((1−u^2 )/((1+u^2 )(2u +x−xu^2 )))du  =2 ∫_0 ^((√2)−1)   ((u^2 −1)/((u^2  +1)(xu^2 −2u −x)))du let decompose  F(u) =((u^2 −1)/((u^2  +1)(xu^2 −2u −x)))  xu^2 −2u−x =0→Δ^′  =1+x^2  >0 ⇒u_1 (x)=((1+(√(1+x^2 )))/x)  u_2 (x)=((1−(√(1+x^2 )))/x) ⇒F(u) =((u^2 −1)/(x(u^2  +1)(u−u_1 )(u−u_2 )))      F(u) =(a/(u−u_1 )) +(b/(u−u_2 )) +((cu +d)/(u^2  +1))  a =lim_(u→u_1 )   (u−u_(1 ) )F(u) =((u_1 ^2 −1)/(x(u_1 ^2 +1)(u_1 −u_2 )))  b =lim_(u→u_2 )     (u−u_2 )F(u) =((u_2 ^2 −1)/(x(u_2 ^2  +1)(u_2 −u_1 )))  lim_(u→+∞) uF(u) =0 =a+b +c ⇒c =−a−b  F(0) =(1/x) =−(a/u_1 ) −(b/u_2 ) +d ⇒d =(1/x) +(a/u_1 ) +(b/u_2 ) ⇒  F(u) =(a/(u−u_1 )) +(b/(u−u_2 )) +((−(a+b)u +(1/x)+(a/u_1 )+(b/u_2 ))/(u^2  +1)) ⇒  f^′ (x) =2 ∫_0 ^((√2)−1)   ((a/(u−u_1 )) +(b/(u−u_2 )) +((−(a+b)u +λ_x )/(u^(2 ) +1)) )du  =2a [ln∣u−u_1 ∣]_0 ^((√2)−1)   +2b [ln∣u−u_2 ∣]_0 ^((√2)−1)  −(a+b)[ln(u^2  +1)]_0 ^((√2)−1)   +2λ_x    [arctanu]_0 ^((√2)−1)   =2a ln∣(((√2)−1−u_1 )/u_1 )∣ +2b ln∣(((√2)−1−u_2 )/u_2 )∣−(a+b)ln( ((√2)−1)^2  +1)  +2λ_x (π/8) ⇒  f(x) =2a ∫  ln∣(((√2)−1−u_1 (x))/(u_1 (x)))∣dx +2b∫ ln∣(((√2)−1−u_2 (x))/(u_2 (x)))∣dx  −(a+b)ln(4−2(√2))x +(π/4) ∫  λ_x  dx  +c ....be continued....

wehavef(x)=0π4costsint+xcostdtchangementtan(t2)=ugivef(x)=0211u21+u22u1+u2+x1u21+u22du1+u2=20211u2(1+u2)(2u+xxu2)du=2021u21(u2+1)(xu22ux)duletdecomposeF(u)=u21(u2+1)(xu22ux)xu22ux=0Δ=1+x2>0u1(x)=1+1+x2xu2(x)=11+x2xF(u)=u21x(u2+1)(uu1)(uu2)F(u)=auu1+buu2+cu+du2+1a=limuu1(uu1)F(u)=u121x(u12+1)(u1u2)b=limuu2(uu2)F(u)=u221x(u22+1)(u2u1)limu+uF(u)=0=a+b+cc=abF(0)=1x=au1bu2+dd=1x+au1+bu2F(u)=auu1+buu2+(a+b)u+1x+au1+bu2u2+1f(x)=2021(auu1+buu2+(a+b)u+λxu2+1)du=2a[lnuu1]021+2b[lnuu2]021(a+b)[ln(u2+1)]021+2λx[arctanu]021=2aln21u1u1+2bln21u2u2(a+b)ln((21)2+1)+2λxπ8f(x)=2aln21u1(x)u1(x)dx+2bln21u2(x)u2(x)dx(a+b)ln(422)x+π4λxdx+c....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com