All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 65133 by turbo msup by abdo last updated on 25/Jul/19
findf(x)=∫0π4ln(sint+xcost)dtxreal.
Commented by mathmax by abdo last updated on 27/Jul/19
wehavef′(x)=∫0π4costsint+xcostdtchangementtan(t2)=ugivef′(x)=∫02−11−u21+u22u1+u2+x1−u21+u22du1+u2=2∫02−11−u2(1+u2)(2u+x−xu2)du=2∫02−1u2−1(u2+1)(xu2−2u−x)duletdecomposeF(u)=u2−1(u2+1)(xu2−2u−x)xu2−2u−x=0→Δ′=1+x2>0⇒u1(x)=1+1+x2xu2(x)=1−1+x2x⇒F(u)=u2−1x(u2+1)(u−u1)(u−u2)F(u)=au−u1+bu−u2+cu+du2+1a=limu→u1(u−u1)F(u)=u12−1x(u12+1)(u1−u2)b=limu→u2(u−u2)F(u)=u22−1x(u22+1)(u2−u1)limu→+∞uF(u)=0=a+b+c⇒c=−a−bF(0)=1x=−au1−bu2+d⇒d=1x+au1+bu2⇒F(u)=au−u1+bu−u2+−(a+b)u+1x+au1+bu2u2+1⇒f′(x)=2∫02−1(au−u1+bu−u2+−(a+b)u+λxu2+1)du=2a[ln∣u−u1∣]02−1+2b[ln∣u−u2∣]02−1−(a+b)[ln(u2+1)]02−1+2λx[arctanu]02−1=2aln∣2−1−u1u1∣+2bln∣2−1−u2u2∣−(a+b)ln((2−1)2+1)+2λxπ8⇒f(x)=2a∫ln∣2−1−u1(x)u1(x)∣dx+2b∫ln∣2−1−u2(x)u2(x)∣dx−(a+b)ln(4−22)x+π4∫λxdx+c....becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com