All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 65137 by Tony Lin last updated on 25/Jul/19
∫dx(x−2)3(x+1)2=?
Commented by mathmax by abdo last updated on 25/Jul/19
letI=∫dx(x−2)3(x+1)2changementx−2=tgiveI=∫dtt3(t+3)2letdecomposeF(t)=1t3(t+3)2⇒F(t)=at+bt2+ct3+dt+3+e(t+3)2c=limt→0t3F(t)=19e=limt→−3(t+3)2F(t)=−127⇒F(t)=at+bt2+19t3+dt+3−127(t+3)2limt→+∞tF(t)=0=a+d⇒d=−a⇒F(t)=at+bt2+19t3−at+3−127(t+3)2F(1)=116=a+b+19−a4−127.16⇒1=16a+16b+169−4a−127⇒12a+16b+4727=1⇒12a+16b=1−4727=−2027⇒3a+4b=−527F(−2)=−18=−a2+b4−19.8−a−127⇒18=a2−b4+19.8+a+127⇒1=4a−2b+19+8a+827⇒12a−2b+1127=1⇒12a−2b=1−1127=1627⇒6a−b=427⇒b=6a−427⇒3a+4(6a−427)=−527⇒27a=1627−527=1127⇒a=11272b=66272−4.27272=−42272⇒F(t)=11272t−42272t2+19t3−11272(t+3)−127(t+3)2⇒I=∫F(t)dt=11272ln∣t∣+4227t−118t2−11272ln∣t+3∣+127(t+3)+C=11272ln∣x−2∣+4227(x−2)−118(x−2)2−11272ln∣x+1∣+127(x+1)+C.
Commented by Tony Lin last updated on 26/Jul/19
thankssir
Commented by mathmax by abdo last updated on 26/Jul/19
youarewelcomesir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com