Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65137 by Tony Lin last updated on 25/Jul/19

∫(dx/((x−2)^3 (x+1)^2 ))=?

dx(x2)3(x+1)2=?

Commented by mathmax by abdo last updated on 25/Jul/19

let I =∫   (dx/((x−2)^3 (x+1)^2 ))  changement x−2 =t give  I =∫  (dt/(t^3 (t+3)^2 ))  let decompose F(t) =(1/(t^3 (t+3)^2 )) ⇒  F(t) =(a/t) +(b/t^2 ) +(c/t^3 ) +(d/(t+3)) +(e/((t+3)^2 ))  c =lim_(t→0)  t^3  F(t) =(1/9)  e =lim_(t→−3) (t+3)^2 F(t) =−(1/(27)) ⇒F(t) =(a/t) +(b/t^2 ) +(1/(9t^3 )) +(d/(t+3)) −(1/(27(t+3)^2 ))  lim_(t→+∞)  tF(t) =0 =a +d ⇒d =−a ⇒  F(t) =(a/t) +(b/t^2 ) +(1/(9t^3 )) −(a/(t+3)) −(1/(27(t+3)^2 ))  F(1) =(1/(16)) =a+b +(1/9) −(a/4) −(1/(27.16)) ⇒1 =16a+16b+((16)/9)−4a−(1/(27))  ⇒12a+16b  +((47)/(27)) =1 ⇒12a+16b =1−((47)/(27)) =−((20)/(27)) ⇒3a+4b =−(5/(27))  F(−2) =−(1/8) =−(a/2) +(b/4) −(1/(9.8)) −a −(1/(27)) ⇒  (1/8) =(a/2)−(b/4) +(1/(9.8)) +a +(1/(27)) ⇒1 =4a−2b +(1/9) +8a +(8/(27)) ⇒  12a −2b +((11)/(27)) =1 ⇒12a−2b =1−((11)/(27)) =((16)/(27)) ⇒6a−b =(4/(27)) ⇒  b =6a−(4/(27)) ⇒3a+4(6a−(4/(27)))=−(5/(27)) ⇒27a =((16)/(27))−(5/(27)) =((11)/(27)) ⇒a =((11)/(27^2 ))  b =((66)/(27^2 )) −((4.27)/(27^2 )) =−((42)/(27^2 )) ⇒F(t) =((11)/(27^2 t))−((42)/(27^2 t^2 )) +(1/(9t^3 )) −((11)/(27^2 (t+3)))−(1/(27(t+3)^2 ))  ⇒ I =∫ F(t)dt =((11)/(27^2 ))ln∣t∣+((42)/(27t))−(1/(18t^2 )) −((11)/(27^2 ))ln∣t+3∣ +(1/(27(t+3))) +C  =((11)/(27^2 ))ln∣x−2∣+((42)/(27(x−2))) −(1/(18(x−2)^2 )) −((11)/(27^2 ))ln∣x+1∣+(1/(27(x+1))) +C .

letI=dx(x2)3(x+1)2changementx2=tgiveI=dtt3(t+3)2letdecomposeF(t)=1t3(t+3)2F(t)=at+bt2+ct3+dt+3+e(t+3)2c=limt0t3F(t)=19e=limt3(t+3)2F(t)=127F(t)=at+bt2+19t3+dt+3127(t+3)2limt+tF(t)=0=a+dd=aF(t)=at+bt2+19t3at+3127(t+3)2F(1)=116=a+b+19a4127.161=16a+16b+1694a12712a+16b+4727=112a+16b=14727=20273a+4b=527F(2)=18=a2+b419.8a12718=a2b4+19.8+a+1271=4a2b+19+8a+82712a2b+1127=112a2b=11127=16276ab=427b=6a4273a+4(6a427)=52727a=1627527=1127a=11272b=662724.27272=42272F(t)=11272t42272t2+19t311272(t+3)127(t+3)2I=F(t)dt=11272lnt+4227t118t211272lnt+3+127(t+3)+C=11272lnx2+4227(x2)118(x2)211272lnx+1+127(x+1)+C.

Commented by Tony Lin last updated on 26/Jul/19

thanks sir

thankssir

Commented by mathmax by abdo last updated on 26/Jul/19

you are welcome sir.

youarewelcomesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com