Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 65166 by Rio Michael last updated on 25/Jul/19

Given that  f(x) = (2/(x^2 −1))  a) Express f(x) in partial fraction.  b.Evaluate  ∫_3 ^5 f (x) dx

$${Given}\:{that}\:\:{f}\left({x}\right)\:=\:\frac{\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\left.{a}\right)\:{Express}\:{f}\left({x}\right)\:{in}\:{partial}\:{fraction}. \\ $$$${b}.{Evaluate}\:\:\int_{\mathrm{3}} ^{\mathrm{5}} {f}\:\left({x}\right)\:{dx} \\ $$

Commented by mathmax by abdo last updated on 26/Jul/19

a) we have f(x) =(2/((x−1)(x+1))) =(1/(x−1))−(1/(x+1))  b) ∫_3 ^5 f(x)dx =∫_3 ^5 ((1/(x−1))−(1/(x+1)))dx =[ln∣x−1∣−ln∣x+1∣]_3 ^5   =[ln∣((x−1)/(x+1))∣]_3 ^5  =ln((4/6))−ln((2/4)) =ln((2/3))−ln((1/2))  =ln(2)−ln(3)+ln2 =2ln2 −ln(3) .

$$\left.{a}\right)\:{we}\:{have}\:{f}\left({x}\right)\:=\frac{\mathrm{2}}{\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)}\:=\frac{\mathrm{1}}{{x}−\mathrm{1}}−\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$$\left.{b}\right)\:\int_{\mathrm{3}} ^{\mathrm{5}} {f}\left({x}\right){dx}\:=\int_{\mathrm{3}} ^{\mathrm{5}} \left(\frac{\mathrm{1}}{{x}−\mathrm{1}}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right){dx}\:=\left[{ln}\mid{x}−\mathrm{1}\mid−{ln}\mid{x}+\mathrm{1}\mid\right]_{\mathrm{3}} ^{\mathrm{5}} \\ $$$$=\left[{ln}\mid\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\mid\right]_{\mathrm{3}} ^{\mathrm{5}} \:={ln}\left(\frac{\mathrm{4}}{\mathrm{6}}\right)−{ln}\left(\frac{\mathrm{2}}{\mathrm{4}}\right)\:={ln}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)−{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$={ln}\left(\mathrm{2}\right)−{ln}\left(\mathrm{3}\right)+{ln}\mathrm{2}\:=\mathrm{2}{ln}\mathrm{2}\:−{ln}\left(\mathrm{3}\right)\:. \\ $$

Answered by mr W last updated on 25/Jul/19

f(x)=(2/(x^2 −1))=(1/(x−1))−(1/(x+1))  ∫_3 ^5 f(x)dx  =∫_3 ^5 ((1/(x−1))−(1/(x+1)))dx  =[ln ((x−1)/(x+1))]_3 ^5   =ln ((5−1)/(5+1))−ln ((3−1)/(3+1))  =ln (2/3)−ln (1/2)  =ln (4/3)

$${f}\left({x}\right)=\frac{\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{{x}−\mathrm{1}}−\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$$\int_{\mathrm{3}} ^{\mathrm{5}} {f}\left({x}\right){dx} \\ $$$$=\int_{\mathrm{3}} ^{\mathrm{5}} \left(\frac{\mathrm{1}}{{x}−\mathrm{1}}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right){dx} \\ $$$$=\left[\mathrm{ln}\:\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right]_{\mathrm{3}} ^{\mathrm{5}} \\ $$$$=\mathrm{ln}\:\frac{\mathrm{5}−\mathrm{1}}{\mathrm{5}+\mathrm{1}}−\mathrm{ln}\:\frac{\mathrm{3}−\mathrm{1}}{\mathrm{3}+\mathrm{1}} \\ $$$$=\mathrm{ln}\:\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\mathrm{ln}\:\frac{\mathrm{4}}{\mathrm{3}} \\ $$

Commented by Rio Michael last updated on 25/Jul/19

thanks

$${thanks} \\ $$

Commented by Rio Michael last updated on 25/Jul/19

any explanation on how   ln((x−1)/(x+1))  s obtained

$${any}\:{explanation}\:{on}\:{how}\: \\ $$$${ln}\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\:\:{s}\:{obtained} \\ $$

Commented by MJS last updated on 25/Jul/19

∫(x−1)dx=ln (x−1)  ∫(x+1)dx=ln (x+1)  ln a −ln b =ln (a/b)  e^(ln a −ln b) =e^(ln a) ×e^(−ln a) =(e^(ln a) /e^(ln b) )=(a/b) ⇒  ⇒ ln e^(ln a −ln b)  =ln a −ln b =ln (a/b)

$$\int\left({x}−\mathrm{1}\right){dx}=\mathrm{ln}\:\left({x}−\mathrm{1}\right) \\ $$$$\int\left({x}+\mathrm{1}\right){dx}=\mathrm{ln}\:\left({x}+\mathrm{1}\right) \\ $$$$\mathrm{ln}\:{a}\:−\mathrm{ln}\:{b}\:=\mathrm{ln}\:\frac{{a}}{{b}} \\ $$$$\mathrm{e}^{\mathrm{ln}\:{a}\:−\mathrm{ln}\:{b}} =\mathrm{e}^{\mathrm{ln}\:{a}} ×\mathrm{e}^{−\mathrm{ln}\:{a}} =\frac{\mathrm{e}^{\mathrm{ln}\:{a}} }{\mathrm{e}^{\mathrm{ln}\:{b}} }=\frac{{a}}{{b}}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{ln}\:\mathrm{e}^{\mathrm{ln}\:{a}\:−\mathrm{ln}\:{b}} \:=\mathrm{ln}\:{a}\:−\mathrm{ln}\:{b}\:=\mathrm{ln}\:\frac{{a}}{{b}} \\ $$

Commented by mr W last updated on 25/Jul/19

∫((1/(x−1))−(1/(x+1)))dx  =∫(1/(x−1))dx−∫(1/(x+1))dx  =∫(1/(x−1))d(x−1)−∫(1/(x+1))d(x+1)  =ln (x−1)−ln (x+1)  =ln ((x−1)/(x+1))

$$\int\left(\frac{\mathrm{1}}{{x}−\mathrm{1}}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right){dx} \\ $$$$=\int\frac{\mathrm{1}}{{x}−\mathrm{1}}{dx}−\int\frac{\mathrm{1}}{{x}+\mathrm{1}}{dx} \\ $$$$=\int\frac{\mathrm{1}}{{x}−\mathrm{1}}{d}\left({x}−\mathrm{1}\right)−\int\frac{\mathrm{1}}{{x}+\mathrm{1}}{d}\left({x}+\mathrm{1}\right) \\ $$$$=\mathrm{ln}\:\left({x}−\mathrm{1}\right)−\mathrm{ln}\:\left({x}+\mathrm{1}\right) \\ $$$$=\mathrm{ln}\:\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}} \\ $$

Commented by Rio Michael last updated on 25/Jul/19

thanks you guys so much

$${thanks}\:{you}\:{guys}\:{so}\:{much} \\ $$

Answered by meme last updated on 25/Jul/19

a) f(x)=(2/((x−1)(x+1)))=(1/((x−1)))−(1/((x+1)))      b)∫_3 ^5   f(x) dx=∫_3 ^5   (1/((x−1))) dx −∫_3 ^5   (1/((x+1))) dx                      =[ln(x−1)]_3 ^5 −[ln(x+1)]_3 ^5   =ln4−ln2−ln6+ln4  =4ln2−ln2−ln6  =3ln2−ln6  =ln(4/3)

$$\left.{a}\right)\:{f}\left({x}\right)=\frac{\mathrm{2}}{\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)}−\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)} \\ $$$$\left.\:\:\:\:{b}\right)\int_{\mathrm{3}} ^{\mathrm{5}} \:\:{f}\left({x}\right)\:{dx}=\int_{\mathrm{3}} ^{\mathrm{5}} \:\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)}\:{dx}\:−\int_{\mathrm{3}} ^{\mathrm{5}} \:\:\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)}\:{dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$=\left[{ln}\left({x}−\mathrm{1}\right)\right]_{\mathrm{3}} ^{\mathrm{5}} −\left[{ln}\left({x}+\mathrm{1}\right)\right]_{\mathrm{3}} ^{\mathrm{5}} \\ $$$$={ln}\mathrm{4}−{ln}\mathrm{2}−{ln}\mathrm{6}+{ln}\mathrm{4} \\ $$$$=\mathrm{4}{ln}\mathrm{2}−{ln}\mathrm{2}−{ln}\mathrm{6} \\ $$$$=\mathrm{3}{ln}\mathrm{2}−{ln}\mathrm{6} \\ $$$$={ln}\frac{\mathrm{4}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com