Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 6519 by benny last updated on 30/Jun/16

 ∫_( 0) ^a    (1/(x+(√(a^2 −x^2 )))) dx =

$$\:\underset{\:\mathrm{0}} {\overset{{a}} {\int}}\:\:\:\frac{\mathrm{1}}{{x}+\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}\:{dx}\:= \\ $$

Commented by Tawakalitu. last updated on 30/Jun/16

(Π/4)

$$\frac{\Pi}{\mathrm{4}} \\ $$

Commented by Tawakalitu. last updated on 01/Jul/16

x = a sint   dx = a cost dt   ∴ ∫(dx/(x + (√(a^2  − x^2 ))))   = ∫((a cost dt)/(a sint + (√(a^2  − a^2  sin^2 t))))  = ∫((a cost dt)/(a sint + (√(a^2  − a^2  (1 − cos^2 t))))) = ∫((a cost dt)/(a sint + (√(a^2  − a^2  + a^2 cos^2 t))))  = ∫((a cost dt)/(a sint + (√(a^2  cos^2 t))))  = ∫((a cost dt)/(a sint + a cost))  =  ∫((a cost dt)/(a(sint + cost)))  = ∫((cost dt)/(sint + cost))  = ∫(((1/2) × 2 cost dt)/(sint + cost))  = ∫(((1/2) × (cost + cost) dt)/(sint + cost))  = ∫(((1/2) × (cost + sint + cost − sint) dt)/(sint + cost))   = ∫(((1/2)(cost + sint)dt + (1/2)(cost − sint)dt)/(cost + sint))  = ∫(1/2) × ((cost + sint)/(cost + sint)) dt + ∫(1/2) × ((cost − sint)/(cost + sint)) dt  = ∫(1/2) dt + ∫(1/2) × ((cost − sint)/(cost + sint)) dt  let u = cost + sint,   (du/dt) = − sint + cost , du = (cost − sint) dt  = ∫(1/2) dt + ∫(1/2) × (du/u)  = (1/2)t + ln(u) + C  = (1/2)t + ln(cost + sint) + C  But, x = a sint   ....   x = 0, a  0 = a sint ⇒ sint = 0 ⇒ t = sin^(−1) 0 ⇒ t = 0  Again,  a = a sint ⇒ sint = 1 ⇒ t = sin^(−1) (1) ⇒ t = 90 ⇒ t = (Π/2)  [(1/2)t + ln(sint + cost) + C]_0 ^(Π/2)   = (1/2)((Π/2))+ln(sin(Π/2)+cos(Π/2))+C − [(1/2)(0)+ln(sin0+cos0) + C]  = (Π/4) + ln(1+0)+C−0−ln(0+1)−C  = (Π/4) + ln(1) + C − 0 − ln(1) − C  = (Π/4)     DONE !  Force × Distance = ISE

$${x}\:=\:{a}\:{sint}\: \\ $$$${dx}\:=\:{a}\:{cost}\:{dt}\: \\ $$$$\therefore\:\int\frac{{dx}}{{x}\:+\:\sqrt{{a}^{\mathrm{2}} \:−\:{x}^{\mathrm{2}} }}\: \\ $$$$=\:\int\frac{{a}\:{cost}\:{dt}}{{a}\:{sint}\:+\:\sqrt{{a}^{\mathrm{2}} \:−\:{a}^{\mathrm{2}} \:{sin}^{\mathrm{2}} {t}}}\:\:=\:\int\frac{{a}\:{cost}\:{dt}}{{a}\:{sint}\:+\:\sqrt{{a}^{\mathrm{2}} \:−\:{a}^{\mathrm{2}} \:\left(\mathrm{1}\:−\:{cos}^{\mathrm{2}} {t}\right)}}\:=\:\int\frac{{a}\:{cost}\:{dt}}{{a}\:{sint}\:+\:\sqrt{{a}^{\mathrm{2}} \:−\:{a}^{\mathrm{2}} \:+\:{a}^{\mathrm{2}} {cos}^{\mathrm{2}} {t}}} \\ $$$$=\:\int\frac{{a}\:{cost}\:{dt}}{{a}\:{sint}\:+\:\sqrt{{a}^{\mathrm{2}} \:{cos}^{\mathrm{2}} {t}}} \\ $$$$=\:\int\frac{{a}\:{cost}\:{dt}}{{a}\:{sint}\:+\:{a}\:{cost}}\:\:=\:\:\int\frac{{a}\:{cost}\:{dt}}{{a}\left({sint}\:+\:{cost}\right)} \\ $$$$=\:\int\frac{{cost}\:{dt}}{{sint}\:+\:{cost}} \\ $$$$=\:\int\frac{\frac{\mathrm{1}}{\mathrm{2}}\:×\:\mathrm{2}\:{cost}\:{dt}}{{sint}\:+\:{cost}} \\ $$$$=\:\int\frac{\frac{\mathrm{1}}{\mathrm{2}}\:×\:\left({cost}\:+\:{cost}\right)\:{dt}}{{sint}\:+\:{cost}} \\ $$$$=\:\int\frac{\frac{\mathrm{1}}{\mathrm{2}}\:×\:\left({cost}\:+\:{sint}\:+\:{cost}\:−\:{sint}\right)\:{dt}}{{sint}\:+\:{cost}}\: \\ $$$$=\:\int\frac{\frac{\mathrm{1}}{\mathrm{2}}\left({cost}\:+\:{sint}\right){dt}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\left({cost}\:−\:{sint}\right){dt}}{{cost}\:+\:{sint}} \\ $$$$=\:\int\frac{\mathrm{1}}{\mathrm{2}}\:×\:\frac{{cost}\:+\:{sint}}{{cost}\:+\:{sint}}\:{dt}\:+\:\int\frac{\mathrm{1}}{\mathrm{2}}\:×\:\frac{{cost}\:−\:{sint}}{{cost}\:+\:{sint}}\:{dt} \\ $$$$=\:\int\frac{\mathrm{1}}{\mathrm{2}}\:{dt}\:+\:\int\frac{\mathrm{1}}{\mathrm{2}}\:×\:\frac{{cost}\:−\:{sint}}{{cost}\:+\:{sint}}\:{dt} \\ $$$${let}\:{u}\:=\:{cost}\:+\:{sint},\:\:\:\frac{{du}}{{dt}}\:=\:−\:{sint}\:+\:{cost}\:,\:{du}\:=\:\left({cost}\:−\:{sint}\right)\:{dt} \\ $$$$=\:\int\frac{\mathrm{1}}{\mathrm{2}}\:{dt}\:+\:\int\frac{\mathrm{1}}{\mathrm{2}}\:×\:\frac{{du}}{{u}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}{t}\:+\:{ln}\left({u}\right)\:+\:{C} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}{t}\:+\:{ln}\left({cost}\:+\:{sint}\right)\:+\:{C} \\ $$$${But},\:{x}\:=\:{a}\:{sint}\:\:\:....\:\:\:{x}\:=\:\mathrm{0},\:{a} \\ $$$$\mathrm{0}\:=\:{a}\:{sint}\:\Rightarrow\:{sint}\:=\:\mathrm{0}\:\Rightarrow\:{t}\:=\:{sin}^{−\mathrm{1}} \mathrm{0}\:\Rightarrow\:{t}\:=\:\mathrm{0} \\ $$$${Again}, \\ $$$${a}\:=\:{a}\:{sint}\:\Rightarrow\:{sint}\:=\:\mathrm{1}\:\Rightarrow\:{t}\:=\:{sin}^{−\mathrm{1}} \left(\mathrm{1}\right)\:\Rightarrow\:{t}\:=\:\mathrm{90}\:\Rightarrow\:{t}\:=\:\frac{\Pi}{\mathrm{2}} \\ $$$$\left[\frac{\mathrm{1}}{\mathrm{2}}{t}\:+\:{ln}\left({sint}\:+\:{cost}\right)\:+\:{C}\right]_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\Pi}{\mathrm{2}}\right)+{ln}\left({sin}\frac{\Pi}{\mathrm{2}}+{cos}\frac{\Pi}{\mathrm{2}}\right)+{C}\:−\:\left[\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{0}\right)+{ln}\left({sin}\mathrm{0}+{cos}\mathrm{0}\right)\:+\:{C}\right] \\ $$$$=\:\frac{\Pi}{\mathrm{4}}\:+\:{ln}\left(\mathrm{1}+\mathrm{0}\right)+{C}−\mathrm{0}−{ln}\left(\mathrm{0}+\mathrm{1}\right)−{C} \\ $$$$=\:\frac{\Pi}{\mathrm{4}}\:+\:{ln}\left(\mathrm{1}\right)\:+\:{C}\:−\:\mathrm{0}\:−\:{ln}\left(\mathrm{1}\right)\:−\:{C} \\ $$$$=\:\frac{\Pi}{\mathrm{4}}\: \\ $$$$ \\ $$$${DONE}\:! \\ $$$${Force}\:×\:{Distance}\:=\:{ISE} \\ $$$$ \\ $$

Commented by sandy_suhendra last updated on 01/Jul/16

It′s a great answer.   But I think there is only a little mistake in typing  sin t = 1 ⇒ t = 90 (not 45) = (π/2)

$${It}'{s}\:{a}\:{great}\:{answer}.\: \\ $$$${But}\:{I}\:{think}\:{there}\:{is}\:{only}\:{a}\:{little}\:{mistake}\:{in}\:{typing} \\ $$$${sin}\:{t}\:=\:\mathrm{1}\:\Rightarrow\:{t}\:=\:\mathrm{90}\:\left({not}\:\mathrm{45}\right)\:=\:\frac{\pi}{\mathrm{2}} \\ $$

Commented by Tawakalitu. last updated on 01/Jul/16

corrected. 10Q

$${corrected}.\:\mathrm{10}{Q} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com