All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 65192 by naka3546 last updated on 26/Jul/19
Minimumvalueof∣sinx+cosx+tanx+cotx+secx+cosecx∣is...
Answered by Tanmay chaudhury last updated on 26/Jul/19
sinx+cosx→(letsinx+cosx=a)2(12sinx+12cosx)2sin(x+π4)2⩾2sin(x+π4)⩾−22⩾a⩾−2so2⩾sinx+cosx⩾−2tanx+cotx=1sinxcosx=2sin2x=2−1+1+sin2x=2−1+(sinx+cosx)2=2a2−1secx+cosecx=1cosx+1sinx=2(sinx+cosx)sin2x=2(a)a2−1now∣sinx+cosx+tanx+cotx+secx+cosecx∣=∣a+2a2−1+2aa2−1∣=∣a+2×a+1(a+1)(a−1)∣=∣a+2a−1∣puta=2=∣2+2(2+1)(2−1)(2+1)∣=∣2+22+2∣=32+2=6.23puta=−2∣−2+2−2−1∣∣−2−2(2−1)1∣∣−2−22+2∣∣2−32∣∣−2.23∣=2.23puta=0∣a+2a−1∣=∣0+2−1∣=2sominimumvalueis2plscheck
Terms of Service
Privacy Policy
Contact: info@tinkutara.com