Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 65193 by mathmax by abdo last updated on 26/Jul/19

U_n  is a sequence wich verify U_n +U_(n+1) =n for all integr n  1) calculate U_n  intrem of n  2) find nature of the serie Σ (U_n /n^2 )

$${U}_{{n}} \:{is}\:{a}\:{sequence}\:{wich}\:{verify}\:{U}_{{n}} +{U}_{{n}+\mathrm{1}} ={n}\:{for}\:{all}\:{integr}\:{n} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \:{intrem}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:\frac{{U}_{{n}} }{{n}^{\mathrm{2}} } \\ $$

Commented by mathmax by abdo last updated on 26/Jul/19

1) we have U_n  +U_(n+1) =n  ⇒Σ_(k=0) ^(n−1) (−1)^k (U_k  +U_(k+1) ) =Σ_(k=0) ^(n−1) k(−1)^k   ⇒U_0 +U_1 −U_1 −U_2  +...(−1)^(n−2) (U_(n−2) +U_(n−1) )+(−1)^(n−1) (U_(n−1) +U_n )  =Σ_(k=0) ^(n−1)  k(−1)^k  ⇒  U_0   +(−1)^(n−1)  U_n =Σ_(k=0) ^(n−1) k(−1)^k  ⇒(−1)^(n−1)  U_n =Σ_(k=0) ^(n−1) k(−1)^k  −U_0   ⇒U_n =Σ_(k=0) ^(n−1) k(−1)^(k+n−1)  −(−1)^(n−1)  U_0  ⇒  U_n =(−1)^(n−1)  Σ_(k=0) ^(n−1) k(−1)^k  +(−1)^n  U_0   let p(x) =Σ_(k=0) ^(n−1) kx^k      we have Σ_(k=0) ^(n−1) x^k  =((1−x^n )/(1−x))     (x≠1) ⇒  Σ_(k=1) ^(n−1) kx^(k−1)  =(((x^n −1)/(x−1)))^′  =((nx^(n−1) (x−1)−(x^n −1)×1)/((x−1)^2 ))  =((nx^n −nx^(n−1) −x^n +1)/((x−1)^2 )) =(((n−1)x^n −nx^(n−1)  +1)/((x−1)^2 )) ⇒  Σ_(k=1) ^(n−1)  kx^k  =(((n−1)x^(n+1) −nx^n  +x)/((x−1)^2 )) ⇒  Σ_(k=0) ^(n−1)  k(−1)^k  =(((n−1)(−1)^(n+1) −n(−1)^n −1)/4)  =((−n(−1)^n  +(−1)^n −n(−1)^n −1)/4) =((−2n(−1)^n  +(−1)^n −1)/4) ⇒  U_n =(((−1)^(n−1) )/4){ −2n(−1)^n +(−1)^n −1}+(−1)^n  U_0   =−(1/4){−2n+1−(−1)^n }+(−1)^n  U_0  ⇒  U_n =(1/4){2n−1 +(−1)^n } +(−1)^n  U_0   2) Σ_(n=1) ^∞   (U_n /n^2 ) =Σ_(n=1) ^∞ (1/(2n)) −(1/4) Σ_(n=1) ^∞  (1/n^2 ) +(1/4)Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +Σ_(n=1) ^∞ (((−1)^n U_0 )/n^2 )  the serie Σ(1/(2n)) diverges ⇒Σ(U_n /n^2 ) diverges...

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{U}_{{n}} \:+{U}_{{n}+\mathrm{1}} ={n}\:\:\Rightarrow\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} \left({U}_{{k}} \:+{U}_{{k}+\mathrm{1}} \right)\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {k}\left(−\mathrm{1}\right)^{{k}} \\ $$$$\Rightarrow{U}_{\mathrm{0}} +{U}_{\mathrm{1}} −{U}_{\mathrm{1}} −{U}_{\mathrm{2}} \:+...\left(−\mathrm{1}\right)^{{n}−\mathrm{2}} \left({U}_{{n}−\mathrm{2}} +{U}_{{n}−\mathrm{1}} \right)+\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left({U}_{{n}−\mathrm{1}} +{U}_{{n}} \right) \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\left(−\mathrm{1}\right)^{{k}} \:\Rightarrow \\ $$$${U}_{\mathrm{0}} \:\:+\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {k}\left(−\mathrm{1}\right)^{{k}} \:\Rightarrow\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {k}\left(−\mathrm{1}\right)^{{k}} \:−{U}_{\mathrm{0}} \\ $$$$\Rightarrow{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {k}\left(−\mathrm{1}\right)^{{k}+{n}−\mathrm{1}} \:−\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{U}_{\mathrm{0}} \:\Rightarrow \\ $$$${U}_{{n}} =\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {k}\left(−\mathrm{1}\right)^{{k}} \:+\left(−\mathrm{1}\right)^{{n}} \:{U}_{\mathrm{0}} \\ $$$${let}\:{p}\left({x}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {kx}^{{k}} \:\:\:\:\:{we}\:{have}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {x}^{{k}} \:=\frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}}\:\:\:\:\:\left({x}\neq\mathrm{1}\right)\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {kx}^{{k}−\mathrm{1}} \:=\left(\frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}\right)^{'} \:=\frac{{nx}^{{n}−\mathrm{1}} \left({x}−\mathrm{1}\right)−\left({x}^{{n}} −\mathrm{1}\right)×\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{{nx}^{{n}} −{nx}^{{n}−\mathrm{1}} −{x}^{{n}} +\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\left({n}−\mathrm{1}\right){x}^{{n}} −{nx}^{{n}−\mathrm{1}} \:+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:{kx}^{{k}} \:=\frac{\left({n}−\mathrm{1}\right){x}^{{n}+\mathrm{1}} −{nx}^{{n}} \:+{x}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\left(−\mathrm{1}\right)^{{k}} \:=\frac{\left({n}−\mathrm{1}\right)\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} −{n}\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}}{\mathrm{4}} \\ $$$$=\frac{−{n}\left(−\mathrm{1}\right)^{{n}} \:+\left(−\mathrm{1}\right)^{{n}} −{n}\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}}{\mathrm{4}}\:=\frac{−\mathrm{2}{n}\left(−\mathrm{1}\right)^{{n}} \:+\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}}{\mathrm{4}}\:\Rightarrow \\ $$$${U}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{4}}\left\{\:−\mathrm{2}{n}\left(−\mathrm{1}\right)^{{n}} +\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right\}+\left(−\mathrm{1}\right)^{{n}} \:{U}_{\mathrm{0}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\left\{−\mathrm{2}{n}+\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} \right\}+\left(−\mathrm{1}\right)^{{n}} \:{U}_{\mathrm{0}} \:\Rightarrow \\ $$$${U}_{{n}} =\frac{\mathrm{1}}{\mathrm{4}}\left\{\mathrm{2}{n}−\mathrm{1}\:+\left(−\mathrm{1}\right)^{{n}} \right\}\:+\left(−\mathrm{1}\right)^{{n}} \:{U}_{\mathrm{0}} \\ $$$$\left.\mathrm{2}\right)\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{U}_{{n}} }{{n}^{\mathrm{2}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}{n}}\:−\frac{\mathrm{1}}{\mathrm{4}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{4}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }\:+\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} {U}_{\mathrm{0}} }{{n}^{\mathrm{2}} } \\ $$$${the}\:{serie}\:\Sigma\frac{\mathrm{1}}{\mathrm{2}{n}}\:{diverges}\:\Rightarrow\Sigma\frac{{U}_{{n}} }{{n}^{\mathrm{2}} }\:{diverges}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com