Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 65193 by mathmax by abdo last updated on 26/Jul/19

U_n  is a sequence wich verify U_n +U_(n+1) =n for all integr n  1) calculate U_n  intrem of n  2) find nature of the serie Σ (U_n /n^2 )

UnisasequencewichverifyUn+Un+1=nforallintegrn1)calculateUnintremofn2)findnatureoftheserieΣUnn2

Commented by mathmax by abdo last updated on 26/Jul/19

1) we have U_n  +U_(n+1) =n  ⇒Σ_(k=0) ^(n−1) (−1)^k (U_k  +U_(k+1) ) =Σ_(k=0) ^(n−1) k(−1)^k   ⇒U_0 +U_1 −U_1 −U_2  +...(−1)^(n−2) (U_(n−2) +U_(n−1) )+(−1)^(n−1) (U_(n−1) +U_n )  =Σ_(k=0) ^(n−1)  k(−1)^k  ⇒  U_0   +(−1)^(n−1)  U_n =Σ_(k=0) ^(n−1) k(−1)^k  ⇒(−1)^(n−1)  U_n =Σ_(k=0) ^(n−1) k(−1)^k  −U_0   ⇒U_n =Σ_(k=0) ^(n−1) k(−1)^(k+n−1)  −(−1)^(n−1)  U_0  ⇒  U_n =(−1)^(n−1)  Σ_(k=0) ^(n−1) k(−1)^k  +(−1)^n  U_0   let p(x) =Σ_(k=0) ^(n−1) kx^k      we have Σ_(k=0) ^(n−1) x^k  =((1−x^n )/(1−x))     (x≠1) ⇒  Σ_(k=1) ^(n−1) kx^(k−1)  =(((x^n −1)/(x−1)))^′  =((nx^(n−1) (x−1)−(x^n −1)×1)/((x−1)^2 ))  =((nx^n −nx^(n−1) −x^n +1)/((x−1)^2 )) =(((n−1)x^n −nx^(n−1)  +1)/((x−1)^2 )) ⇒  Σ_(k=1) ^(n−1)  kx^k  =(((n−1)x^(n+1) −nx^n  +x)/((x−1)^2 )) ⇒  Σ_(k=0) ^(n−1)  k(−1)^k  =(((n−1)(−1)^(n+1) −n(−1)^n −1)/4)  =((−n(−1)^n  +(−1)^n −n(−1)^n −1)/4) =((−2n(−1)^n  +(−1)^n −1)/4) ⇒  U_n =(((−1)^(n−1) )/4){ −2n(−1)^n +(−1)^n −1}+(−1)^n  U_0   =−(1/4){−2n+1−(−1)^n }+(−1)^n  U_0  ⇒  U_n =(1/4){2n−1 +(−1)^n } +(−1)^n  U_0   2) Σ_(n=1) ^∞   (U_n /n^2 ) =Σ_(n=1) ^∞ (1/(2n)) −(1/4) Σ_(n=1) ^∞  (1/n^2 ) +(1/4)Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +Σ_(n=1) ^∞ (((−1)^n U_0 )/n^2 )  the serie Σ(1/(2n)) diverges ⇒Σ(U_n /n^2 ) diverges...

1)wehaveUn+Un+1=nk=0n1(1)k(Uk+Uk+1)=k=0n1k(1)kU0+U1U1U2+...(1)n2(Un2+Un1)+(1)n1(Un1+Un)=k=0n1k(1)kU0+(1)n1Un=k=0n1k(1)k(1)n1Un=k=0n1k(1)kU0Un=k=0n1k(1)k+n1(1)n1U0Un=(1)n1k=0n1k(1)k+(1)nU0letp(x)=k=0n1kxkwehavek=0n1xk=1xn1x(x1)k=1n1kxk1=(xn1x1)=nxn1(x1)(xn1)×1(x1)2=nxnnxn1xn+1(x1)2=(n1)xnnxn1+1(x1)2k=1n1kxk=(n1)xn+1nxn+x(x1)2k=0n1k(1)k=(n1)(1)n+1n(1)n14=n(1)n+(1)nn(1)n14=2n(1)n+(1)n14Un=(1)n14{2n(1)n+(1)n1}+(1)nU0=14{2n+1(1)n}+(1)nU0Un=14{2n1+(1)n}+(1)nU02)n=1Unn2=n=112n14n=11n2+14n=1(1)nn2+n=1(1)nU0n2theserieΣ12ndivergesΣUnn2diverges...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com