All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 65193 by mathmax by abdo last updated on 26/Jul/19
UnisasequencewichverifyUn+Un+1=nforallintegrn1)calculateUnintremofn2)findnatureoftheserieΣUnn2
Commented by mathmax by abdo last updated on 26/Jul/19
1)wehaveUn+Un+1=n⇒∑k=0n−1(−1)k(Uk+Uk+1)=∑k=0n−1k(−1)k⇒U0+U1−U1−U2+...(−1)n−2(Un−2+Un−1)+(−1)n−1(Un−1+Un)=∑k=0n−1k(−1)k⇒U0+(−1)n−1Un=∑k=0n−1k(−1)k⇒(−1)n−1Un=∑k=0n−1k(−1)k−U0⇒Un=∑k=0n−1k(−1)k+n−1−(−1)n−1U0⇒Un=(−1)n−1∑k=0n−1k(−1)k+(−1)nU0letp(x)=∑k=0n−1kxkwehave∑k=0n−1xk=1−xn1−x(x≠1)⇒∑k=1n−1kxk−1=(xn−1x−1)′=nxn−1(x−1)−(xn−1)×1(x−1)2=nxn−nxn−1−xn+1(x−1)2=(n−1)xn−nxn−1+1(x−1)2⇒∑k=1n−1kxk=(n−1)xn+1−nxn+x(x−1)2⇒∑k=0n−1k(−1)k=(n−1)(−1)n+1−n(−1)n−14=−n(−1)n+(−1)n−n(−1)n−14=−2n(−1)n+(−1)n−14⇒Un=(−1)n−14{−2n(−1)n+(−1)n−1}+(−1)nU0=−14{−2n+1−(−1)n}+(−1)nU0⇒Un=14{2n−1+(−1)n}+(−1)nU02)∑n=1∞Unn2=∑n=1∞12n−14∑n=1∞1n2+14∑n=1∞(−1)nn2+∑n=1∞(−1)nU0n2theserieΣ12ndiverges⇒ΣUnn2diverges...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com