Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65200 by rajesh4661kumar@gmail.com last updated on 26/Jul/19

Answered by ajfour last updated on 26/Jul/19

I=∫(√(tan x))dx  let tan x=t^2  ⇒ dx=((2tdt)/(1+t^2 ))  ⇒ I=∫((2t^2 dt)/(1+t^4 ))    = ∫((((1/t^2 )+1)dt)/((−(1/t)+t)^2 +((√2))^2 ))+∫(((−(1/t^2 )+1)dt)/(((1/t)+t)^2 −((√2))^2 ))    =(1/(√2)) tan^(−1) (((t−(1/t))/(√2)))+(1/(2(√2))) ln ∣((t+(1/t)−(√2))/(t+(1/t)+(√2)))∣+c        where t=(√(tan x))  .

I=tanxdxlettanx=t2dx=2tdt1+t2I=2t2dt1+t4=(1t2+1)dt(1t+t)2+(2)2+(1t2+1)dt(1t+t)2(2)2=12tan1(t1t2)+122lnt+1t2t+1t+2+cwheret=tanx.

Answered by zakaria elghaouti last updated on 27/Jul/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com