Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65203 by arcana last updated on 26/Jul/19

∫_0 ^∞  (x^2 /(x^4 +x^2 +1))dx

0x2x4+x2+1dx

Commented by mathmax by abdo last updated on 26/Jul/19

let I =∫_0 ^∞   (x^2 /(x^4  +x^2 +1))dx ⇒2I =∫_(−∞) ^(+∞)   (x^2 /(x^4  +x^2 +1))dx let  ϕ(z) =(z^2 /(z^4  +z^2  +1))   poles of ϕ?  z^4  +z^2  +1 =0 ⇒t^2 +t +1 =0  (t=z^2 )  Δ =1−4 =−3 =(i(√3))^2  ⇒t_1 =((−1+i(√3))/2)  and t_2 =((−1−i(√3))/2)  t_1 =e^((i2π)/3)    and  t_2 =e^(−((2iπ)/3))   ⇒t^2  +t+1 =(t−e^((i2π)/3) )(t−e^(−((i2π)/3)) )  =(z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) ) ⇒ϕ(z) =(z^2 /((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  the poles of ϕ are +^− e^((iπ)/3)  and +^− e^(−((iπ)/3))   residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/3) ) +Res(ϕ,−e^(−((iπ)/3)) )}   Res(ϕ,e^((iπ)/3) ) =lim_(z→e^((iπ)/3) )     (z−e^((iπ)/3) )ϕ(z)=(e^((2iπ)/3) /(2e^((iπ)/3) (e^((2iπ)/3) −e^(−((2iπ)/3)) )))  =(e^((iπ)/3) /(2(2isin(((2π)/3))))) =(e^((iπ)/3) /(4i((√3)/2))) =(e^((iπ)/3) /(2i(√3)))  Res(ϕ,−e^(−((iπ)/3)) ) =lim_(z→e^(−((iπ)/3)) )    (z+e^(−((iπ)/3)) ) = (e^(−((2iπ)/3)) /((e^(−((2iπ)/3)) −e^((i2π)/3) )(−2e^(−((iπ)/3)) )))  =(e^(−((iπ)/3)) /(−2i((√3)/2)(−2))) =(e^(−((iπ)/3)) /(2i(√3))) ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(e^((iπ)/3) /(2i(√3))) +(e^(−((iπ)/3)) /(2i(√3)))}  =(π/(√3)){2cos((π/3)) =(π/(√3)) (2.(1/2)) =(π/(√3)) ⇒ I =(1/2) ∫_(−∞) ^(+∞)  ϕ(z)dz =(π/(2(√3))) .

letI=0x2x4+x2+1dx2I=+x2x4+x2+1dxletφ(z)=z2z4+z2+1polesofφ?z4+z2+1=0t2+t+1=0(t=z2)Δ=14=3=(i3)2t1=1+i32andt2=1i32t1=ei2π3andt2=e2iπ3t2+t+1=(tei2π3)(tei2π3)=(z2ei2π3)(z2ei2π3)φ(z)=z2(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)thepolesofφare+eiπ3and+eiπ3residustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,eiπ3)}Res(φ,eiπ3)=limzeiπ3(zeiπ3)φ(z)=e2iπ32eiπ3(e2iπ3e2iπ3)=eiπ32(2isin(2π3))=eiπ34i32=eiπ32i3Res(φ,eiπ3)=limzeiπ3(z+eiπ3)=e2iπ3(e2iπ3ei2π3)(2eiπ3)=eiπ32i32(2)=eiπ32i3+φ(z)dz=2iπ{eiπ32i3+eiπ32i3}=π3{2cos(π3)=π3(2.12)=π3I=12+φ(z)dz=π23.

Answered by Tanmay chaudhury last updated on 26/Jul/19

∫_0 ^∞ (dx/(x^2 +1+(1/x^2 )))  (1/2)∫_0 ^∞ ((1+(1/x^2 )+1−(1/x^2 ))/(x^2 +(1/x^2 )+1))dx  (1/2)∫_0 ^∞ ((d(x−(1/x)))/((x−(1/x))^2 +3))+(1/2)∫_0 ^∞ ((d(x+(1/x)))/((x+(1/x))^2 −1))  (1/2)×(1/(√3))∣tan^(−1) (((x−(1/x))/(√3)))+(1/2)×(1/(2×1))ln(((x+(1/x)−1)/(x+(1/x)+1)))∣_0 ^∞   =(1/(2(√3)))tan^(−1) (∞)−(1/(2(√3)))tan^(−1) (−∞)+(1/4)ln(((1+(1/x^2 )−(1/x))/(1+(1/x^2 )+(1/x))))_(x=∞) −(1/4)ln(((x^2 +1−x)/(x^2 +1+x)))_(x=0)   =(1/(2(√3)))×(π/2)+(1/(2(√3)))×(π/2))+(1/4)×ln1−(1/4)ln1  =(π/(2(√3)))

0dxx2+1+1x21201+1x2+11x2x2+1x2+1dx120d(x1x)(x1x)2+3+120d(x+1x)(x+1x)2112×13tan1(x1x3)+12×12×1ln(x+1x1x+1x+1)0=123tan1()123tan1()+14ln(1+1x21x1+1x2+1x)x=14ln(x2+1xx2+1+x)x=0=123×π2+123×π2)+14×ln114ln1=π23

Commented by arcana last updated on 26/Jul/19

thankss. try solve it with residuals theorem  (its less difficult)

thankss.trysolveitwithresidualstheorem(itslessdifficult)

Commented by Tanmay chaudhury last updated on 26/Jul/19

ok sir...

oksir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com