Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 65212 by ajfour last updated on 26/Jul/19

Commented by ajfour last updated on 26/Jul/19

For P to be unique, determine  how a,b,c are related.

$${For}\:{P}\:{to}\:{be}\:{unique},\:{determine} \\ $$$${how}\:{a},{b},{c}\:{are}\:{related}. \\ $$

Answered by ajfour last updated on 26/Jul/19

let B(0,0)  C(a,0)   ,  D(((ac)/(b+c)),0)  For A(h,k)_(−)     x^2 +y^2 =c^2     (x−a)^2 +y^2 =b^2   ⇒ a(2x−a)=c^2 −b^2   ⇒  x_A =h=((a^2 −b^2 +c^2 )/(2a))    y_A =k=(√(c^2 −(((a^2 −b^2 +c^2 )/(2a)))^2 ))  eq. of BE_(−)        y=((kx)/(a+h))  eq. of CF_(−)        y=−(h/k)(x−a)  eq. of AD_(−)       y=((k(x−((ac)/(b+c))))/((h−((ac)/(b+c)))))  For intersection of BE, CF    ((kx)/(a+h))=−(h/k)(x−a)  ⇒  k^2 x+h(a+h)x=ah(a+h)  ⇒  x_P =((ah(a+h))/(k^2 +h(a+h)))         y_P =((ahk)/(k^2 +h(a+h)))  If P is unique,  P even lies on AD  ⇒  ((ahk)/(k^2 +h(a+h)))=((k(((ah(a+h))/(k^2 +h(a+h)))−((ac)/(b+c))))/((h−((ac)/(b+c)))))  where  h=((a^2 −b^2 +c^2 )/(2a))  and       k=(√(c^2 −(((a^2 −b^2 +c^2 )/(2a)))^2 ))  with little rearrangements  after substitution and if  k≠0, a≠0 , i arrived at     ah(b+c)=c(h^2 +k^2 )  ⇒ a(b+c)(((a^2 −b^2 +c^2 )/(2a)))=c^3   ⇒ (b+c)(a^2 −b^2 +c^2 ) = 2c^3   ⇒  (b+c)(a^2 −b^2 ) = c^2 (c−b)  ⇒  ((a^2 −b^2 )/c^2 )=((c−b)/(c+b))  .

$${let}\:{B}\left(\mathrm{0},\mathrm{0}\right) \\ $$$${C}\left({a},\mathrm{0}\right)\:\:\:,\:\:{D}\left(\frac{{ac}}{{b}+{c}},\mathrm{0}\right) \\ $$$$\underset{−} {{For}\:{A}\left({h},{k}\right)} \\ $$$$\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$$\:\:\left({x}−{a}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$$\Rightarrow\:{a}\left(\mathrm{2}{x}−{a}\right)={c}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{x}_{{A}} ={h}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}{a}} \\ $$$$\:\:{y}_{{A}} ={k}=\sqrt{{c}^{\mathrm{2}} −\left(\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}{a}}\right)^{\mathrm{2}} } \\ $$$$\underset{−} {{eq}.\:{of}\:{BE}}\:\:\:\:\:\:\:{y}=\frac{{kx}}{{a}+{h}} \\ $$$$\underset{−} {{eq}.\:{of}\:{CF}}\:\:\:\:\:\:\:{y}=−\frac{{h}}{{k}}\left({x}−{a}\right) \\ $$$$\underset{−} {{eq}.\:{of}\:{AD}}\:\:\:\:\:\:{y}=\frac{{k}\left({x}−\frac{{ac}}{{b}+{c}}\right)}{\left({h}−\frac{{ac}}{{b}+{c}}\right)} \\ $$$${For}\:{intersection}\:{of}\:{BE},\:{CF} \\ $$$$\:\:\frac{{kx}}{{a}+{h}}=−\frac{{h}}{{k}}\left({x}−{a}\right) \\ $$$$\Rightarrow\:\:{k}^{\mathrm{2}} {x}+{h}\left({a}+{h}\right){x}={ah}\left({a}+{h}\right) \\ $$$$\Rightarrow\:\:{x}_{{P}} =\frac{{ah}\left({a}+{h}\right)}{{k}^{\mathrm{2}} +{h}\left({a}+{h}\right)} \\ $$$$\:\:\:\:\:\:\:{y}_{{P}} =\frac{{ahk}}{{k}^{\mathrm{2}} +{h}\left({a}+{h}\right)} \\ $$$${If}\:{P}\:{is}\:{unique},\:\:{P}\:{even}\:{lies}\:{on}\:{AD} \\ $$$$\Rightarrow\:\:\frac{{ahk}}{{k}^{\mathrm{2}} +{h}\left({a}+{h}\right)}=\frac{{k}\left(\frac{{ah}\left({a}+{h}\right)}{{k}^{\mathrm{2}} +{h}\left({a}+{h}\right)}−\frac{{ac}}{{b}+{c}}\right)}{\left({h}−\frac{{ac}}{{b}+{c}}\right)} \\ $$$${where}\:\:{h}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}{a}} \\ $$$${and}\:\:\:\:\:\:\:{k}=\sqrt{{c}^{\mathrm{2}} −\left(\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}{a}}\right)^{\mathrm{2}} } \\ $$$${with}\:{little}\:{rearrangements} \\ $$$${after}\:{substitution}\:{and}\:{if} \\ $$$${k}\neq\mathrm{0},\:{a}\neq\mathrm{0}\:,\:{i}\:{arrived}\:{at} \\ $$$$\:\:\:{ah}\left({b}+{c}\right)={c}\left({h}^{\mathrm{2}} +{k}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:{a}\left({b}+{c}\right)\left(\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}{a}}\right)={c}^{\mathrm{3}} \\ $$$$\Rightarrow\:\left({b}+{c}\right)\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\:=\:\mathrm{2}{c}^{\mathrm{3}} \\ $$$$\Rightarrow\:\:\left({b}+{c}\right)\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\:=\:{c}^{\mathrm{2}} \left({c}−{b}\right) \\ $$$$\Rightarrow\:\:\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{c}^{\mathrm{2}} }=\frac{{c}−{b}}{{c}+{b}}\:\:. \\ $$

Commented by mr W last updated on 26/Jul/19

nice solution!

$${nice}\:{solution}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com