Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65287 by mathmax by abdo last updated on 27/Jul/19

let f(x) =x∣x∣    2π periodic  odd  developp f at fourier series

$${let}\:{f}\left({x}\right)\:={x}\mid{x}\mid\:\:\:\:\mathrm{2}\pi\:{periodic}\:\:{odd} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series} \\ $$

Commented by mathmax by abdo last updated on 28/Jul/19

f(x) =Σ_(n=1) ^∞  a_n sin(nx) with a_n =(2/T) ∫_([T])   f(x)sin(nx)dx  =(2/(2π)) ∫_(−π) ^π  x∣x∣ sin(nx)dx =(2/π) ∫_0 ^π  x^2 sin(nx)dx   ⇒  (π/2)a_n =∫_0 ^π  x^2 sin(nx)dx  by parts u =x^2  and v^′  =sin(nx) ⇒  (π/2)a_n =[−(x^2 /n)cos(nx)]_0 ^π  −∫_0 ^π   (2x)(−(1/n))cos(nx)dx  =−(π^2 /n)(−1)^n   +(2/n) ∫_0 ^π   x cos(nx)dx again by parts  ∫_0 ^π  x cos(nx)dx =[(x/n)sin(nx)]_0 ^π  −∫_0 ^π  (1/n)sin(nx)dx  =−(1/n) ∫_0 ^π  sin(nx)dx =(1/n^2 )[cos(nx)]_0 ^π  =(1/n^2 )((−1)^n −1) ⇒  (π/2)a_n =−(π^2 /n)(−1)^n  +(2/n^3 ) {(−1)^n −1}  a_n =(2/π){−(π^2 /n)(−1)^n  +(2/n^3 ){ (−1)^n −1)}  =−2π (((−1)^n )/n) +(4/(πn^3 )){ (−1)^n −1} ⇒  x∣x∣ =Σ_(n=1) ^∞   (−2π (((−1)^n )/n) +(4/(πn^3 )){(−1)^n −1})sin(nx)  =−2π Σ_(n=1) ^∞   (((−1)^n )/n)sin(nx) +(4/π) Σ_(n=1) ^∞ (((−1)^n −1)/n^3 )sin(nx)

$${f}\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {sin}\left({nx}\right)\:{with}\:{a}_{{n}} =\frac{\mathrm{2}}{{T}}\:\int_{\left[{T}\right]} \:\:{f}\left({x}\right){sin}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}\pi}\:\int_{−\pi} ^{\pi} \:{x}\mid{x}\mid\:{sin}\left({nx}\right){dx}\:=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{2}} {sin}\left({nx}\right){dx}\:\:\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{2}}{a}_{{n}} =\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{2}} {sin}\left({nx}\right){dx}\:\:{by}\:{parts}\:{u}\:={x}^{\mathrm{2}} \:{and}\:{v}^{'} \:={sin}\left({nx}\right)\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{2}}{a}_{{n}} =\left[−\frac{{x}^{\mathrm{2}} }{{n}}{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:−\int_{\mathrm{0}} ^{\pi} \:\:\left(\mathrm{2}{x}\right)\left(−\frac{\mathrm{1}}{{n}}\right){cos}\left({nx}\right){dx} \\ $$$$=−\frac{\pi^{\mathrm{2}} }{{n}}\left(−\mathrm{1}\right)^{{n}} \:\:+\frac{\mathrm{2}}{{n}}\:\int_{\mathrm{0}} ^{\pi} \:\:{x}\:{cos}\left({nx}\right){dx}\:{again}\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{x}\:{cos}\left({nx}\right){dx}\:=\left[\frac{{x}}{{n}}{sin}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:−\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{1}}{{n}}{sin}\left({nx}\right){dx} \\ $$$$=−\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\pi} \:{sin}\left({nx}\right){dx}\:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left[{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right)\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{2}}{a}_{{n}} =−\frac{\pi^{\mathrm{2}} }{{n}}\left(−\mathrm{1}\right)^{{n}} \:+\frac{\mathrm{2}}{{n}^{\mathrm{3}} }\:\left\{\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right\} \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\pi}\left\{−\frac{\pi^{\mathrm{2}} }{{n}}\left(−\mathrm{1}\right)^{{n}} \:+\frac{\mathrm{2}}{{n}^{\mathrm{3}} }\left\{\:\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right)\right\} \\ $$$$=−\mathrm{2}\pi\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:+\frac{\mathrm{4}}{\pi{n}^{\mathrm{3}} }\left\{\:\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right\}\:\Rightarrow \\ $$$${x}\mid{x}\mid\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(−\mathrm{2}\pi\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:+\frac{\mathrm{4}}{\pi{n}^{\mathrm{3}} }\left\{\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right\}\right){sin}\left({nx}\right) \\ $$$$=−\mathrm{2}\pi\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{sin}\left({nx}\right)\:+\frac{\mathrm{4}}{\pi}\:\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}}{{n}^{\mathrm{3}} }{sin}\left({nx}\right) \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com