Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 65356 by aliesam last updated on 28/Jul/19

Commented by mathmax by abdo last updated on 29/Jul/19

let A(x) =((√(cos^4 x−cos(2x)))/(ln(1+3x)))    we have   cos^4 x −cos(2x) =(((1+cos(2x))/2))^2 −cos(2x)  =(1/4)(1+2cos(2x) +cos^2 (2x))−cos(2x)  =(1/4)−(1/2)cos(2x) +(1/8)(1+cos(4x)) =(3/8)−(1/2)cos(2x)+(1/8)cos(4x)  cos(2x) ∼1−(((2x)^2 )/2) +(((2x)^4 )/(4!)) =1−2x^2  +(2/3)x^4  ⇒  (1/2)cos(2x) ∼ (1/2)−x^2  +(1/3)x^4   cos(4x) ∼1−(((4x)^2 )/2) +(((4x)^4 )/(4!)) =1−8x^2  +(4^3 /6)x^4  ⇒  (1/8)cos(4x) ∼ (1/8)−x^2  +(4^3 /(48))x^4  ⇒  cos^4 x−cos(2x) ∼(3/8)−(1/2) +x^2 −(x^4 /3) +(1/8)−x^2  +(4^3 /(48))x^4   =((4^3 /(48))−(1/3))x^4  ⇒(√(cos^4 x−cos(2x) ))∼(√(((4^3 /(48))−(1/3))))x^2    also we have  ln(1+3x) ∼ 3x  ⇒A(x) ∼ λ x (x∈V(o)) ⇒lim_(x→0) A(x) =0

letA(x)=cos4xcos(2x)ln(1+3x)wehavecos4xcos(2x)=(1+cos(2x)2)2cos(2x)=14(1+2cos(2x)+cos2(2x))cos(2x)=1412cos(2x)+18(1+cos(4x))=3812cos(2x)+18cos(4x)cos(2x)1(2x)22+(2x)44!=12x2+23x412cos(2x)12x2+13x4cos(4x)1(4x)22+(4x)44!=18x2+436x418cos(4x)18x2+4348x4cos4xcos(2x)3812+x2x43+18x2+4348x4=(434813)x4cos4xcos(2x)(434813)x2alsowehaveln(1+3x)3xA(x)λx(xV(o))limx0A(x)=0

Answered by Tanmay chaudhury last updated on 30/Jul/19

or method  N_r =(√(cos^4 x−(2cos^2 x−1)))   =(√((cos^2 x−1)^2 ))   =(√((1−cos^2 x)^2 ))   =sin^2 x  lim_(x→0) ((sin^2 x)/(ln(1+3x)))  lim_(x→0)  (((((sinx)/x))^2 ×x^2 )/(((ln(1+3x))/(3x))×3x))  =lim_(x→0) ((1^2 ×x^2 )/(1×3x))  =lim_(x→0) (x/3)  =0  edited  =((1×0)/(1×3))=0

ormethodNr=cos4x(2cos2x1)=(cos2x1)2=(1cos2x)2=sin2xlimx0sin2xln(1+3x)limx0(sinxx)2×x2ln(1+3x)3x×3x=limx012×x21×3x=limx0x3=0edited=1×01×3=0

Commented by Tanmay chaudhury last updated on 29/Jul/19

yes sir you are correct

yessiryouarecorrect

Commented by kaivan.ahmadi last updated on 29/Jul/19

why 1×3? it must be 1×0

why1×3?itmustbe1×0

Commented by mathmax by abdo last updated on 29/Jul/19

lim_(x→0)    ((sin^2 x)/(ln(1+3x))) =lim_(x→0)       (((((sinx)/x))^2 ×x^2 )/(((ln(1+3x))/(3x))×3x))  =lim_(x→0)     (x^2 /(3x)) =lim_(x→0)   (x/3) =0  because lim_(x→0)   ((sinx)/x) =1  and lim_(x→0)   ((ln(1+3x))/(3x)) =1

limx0sin2xln(1+3x)=limx0(sinxx)2×x2ln(1+3x)3x×3x=limx0x23x=limx0x3=0becauselimx0sinxx=1andlimx0ln(1+3x)3x=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com