Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 65365 by aditya@345 last updated on 29/Jul/19

3sinA+4cosB=6  3cosA+4sinB=1  find angle C

3sinA+4cosB=63cosA+4sinB=1findangleC

Answered by Tanmay chaudhury last updated on 29/Jul/19

(3sinA+4cosB)^2 +(3cosA+4sinB)^2 =37  9(sin^2 A+cos^2 A)+16(cos^2 B+sin^2 B)+24(sinAcosB+cosAsinB)=37  24sin(A+B)=37−25  sin(π−C)=((12)/(24))=(1/2)  sinC=(1/2)=sin(π/6)  C=(π/6)

(3sinA+4cosB)2+(3cosA+4sinB)2=379(sin2A+cos2A)+16(cos2B+sin2B)+24(sinAcosB+cosAsinB)=3724sin(A+B)=3725sin(πC)=1224=12sinC=12=sinπ6C=π6

Answered by behi83417@gmail.com last updated on 29/Jul/19

9sin^2 A+16cos^2 B+24sinA.cosB=36  9cos^2 A+16sin^2 B+24cosAsinB=1  −+++−−−−−−++++++−−−  9+16+24sin(A+B)=37  24sin(180−C)=12  ⇒sinC=(1/2)⇒C^� =30^•      .■

9sin2A+16cos2B+24sinA.cosB=369cos2A+16sin2B+24cosAsinB=1+++++++++9+16+24sin(A+B)=3724sin(180C)=12sinC=12C=30.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com