All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 65365 by aditya@345 last updated on 29/Jul/19
3sinA+4cosB=63cosA+4sinB=1findangleC
Answered by Tanmay chaudhury last updated on 29/Jul/19
(3sinA+4cosB)2+(3cosA+4sinB)2=379(sin2A+cos2A)+16(cos2B+sin2B)+24(sinAcosB+cosAsinB)=3724sin(A+B)=37−25sin(π−C)=1224=12sinC=12=sinπ6C=π6
Answered by behi83417@gmail.com last updated on 29/Jul/19
9sin2A+16cos2B+24sinA.cosB=369cos2A+16sin2B+24cosAsinB=1−+++−−−−−−++++++−−−9+16+24sin(A+B)=3724sin(180−C)=12⇒sinC=12⇒C=30∙.◼
Terms of Service
Privacy Policy
Contact: info@tinkutara.com