Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 65366 by Tawa1 last updated on 29/Jul/19

Commented by Prithwish sen last updated on 29/Jul/19

the length is  = 3 + 2×2 +2×(2^2 /3) + 2×(2^3 /3^2 ) + 2×(2^4 /3^3 ) + .......  =3+4[1+ ((2/3))+((2/3))^2 +((2/3))^3 +........]  = 3 + 4[(1/(1−(2/3)))] = 3+ 4×3 =15

$$\mathrm{the}\:\mathrm{length}\:\mathrm{is} \\ $$$$=\:\mathrm{3}\:+\:\mathrm{2}×\mathrm{2}\:+\mathrm{2}×\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{3}}\:+\:\mathrm{2}×\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{2}} }\:+\:\mathrm{2}×\frac{\mathrm{2}^{\mathrm{4}} }{\mathrm{3}^{\mathrm{3}} }\:+\:....... \\ $$$$=\mathrm{3}+\mathrm{4}\left[\mathrm{1}+\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)+\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} +........\right] \\ $$$$=\:\mathrm{3}\:+\:\mathrm{4}\left[\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}}\right]\:=\:\mathrm{3}+\:\mathrm{4}×\mathrm{3}\:=\mathrm{15} \\ $$

Commented by Tawa1 last updated on 29/Jul/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by JDamian last updated on 29/Jul/19

L=((2+3)/(1−(2/3)))=(5/(1/3))=15 feet

$${L}=\frac{\mathrm{2}+\mathrm{3}}{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}}=\frac{\mathrm{5}}{\frac{\mathrm{1}}{\mathrm{3}}}=\mathrm{15}\:{feet} \\ $$

Commented by KanhAshish last updated on 29/Jul/19

how??

$$\mathrm{how}?? \\ $$

Commented by JDamian last updated on 29/Jul/19

a_n ≡ horizontal side  b_n ≡ vertical side = (2/3)a_n   a_(n+1)  = b_n       l_n  = a_n + b_n       l_(n+1) =(2/3)l_n     triangle #1: l_1  =  3+2 = 5  triangle #2: l_2  = 2+2(2/3)=((10)/3)=(2/3)×5=(2/3)l_1   triangle #3: l_3  = (4/3)+(4/3)×(2/3)=((20)/9)=(2/3)×((10)/3)=(2/3)l_2     this is a geometric progression

$${a}_{{n}} \equiv\:{horizontal}\:{side} \\ $$$${b}_{{n}} \equiv\:{vertical}\:{side}\:=\:\frac{\mathrm{2}}{\mathrm{3}}{a}_{{n}} \\ $$$${a}_{{n}+\mathrm{1}} \:=\:{b}_{{n}} \:\:\:\:\:\:{l}_{{n}} \:=\:{a}_{{n}} +\:{b}_{{n}} \:\:\:\:\:\:{l}_{{n}+\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}}{l}_{{n}} \\ $$$$ \\ $$$${triangle}\:#\mathrm{1}:\:{l}_{\mathrm{1}} \:=\:\:\mathrm{3}+\mathrm{2}\:=\:\mathrm{5} \\ $$$${triangle}\:#\mathrm{2}:\:{l}_{\mathrm{2}} \:=\:\mathrm{2}+\mathrm{2}\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{10}}{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{3}}×\mathrm{5}=\frac{\mathrm{2}}{\mathrm{3}}{l}_{\mathrm{1}} \\ $$$${triangle}\:#\mathrm{3}:\:{l}_{\mathrm{3}} \:=\:\frac{\mathrm{4}}{\mathrm{3}}+\frac{\mathrm{4}}{\mathrm{3}}×\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{20}}{\mathrm{9}}=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{10}}{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{3}}{l}_{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{a}\:\boldsymbol{\mathrm{geometric}}\:\boldsymbol{\mathrm{progression}} \\ $$

Commented by KanhAshish last updated on 29/Jul/19

amazing explanation.. god bless you.

$$\mathrm{amazing}\:\mathrm{explanation}..\:\mathrm{god}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Commented by Tawa1 last updated on 29/Jul/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 29/Jul/19

Commented by mr W last updated on 29/Jul/19

a=b+3  (a/b)=((b+3)/b)=(3/2)  ⇒1+(3/b)=(3/2)  ⇒b=6  ⇒a=6+3=9  length of red path=a+b=9+6=15

$${a}={b}+\mathrm{3} \\ $$$$\frac{{a}}{{b}}=\frac{{b}+\mathrm{3}}{{b}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{1}+\frac{\mathrm{3}}{{b}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow{b}=\mathrm{6} \\ $$$$\Rightarrow{a}=\mathrm{6}+\mathrm{3}=\mathrm{9} \\ $$$${length}\:{of}\:{red}\:{path}={a}+{b}=\mathrm{9}+\mathrm{6}=\mathrm{15} \\ $$

Commented by mr W last updated on 29/Jul/19

for a zig−zag path the path length is  the sum of horizontal and vertical  projection (a+b). the steps may be  irregular. for example the red path,  the blue path and the green path all  have the same length.

$${for}\:{a}\:{zig}−{zag}\:{path}\:{the}\:{path}\:{length}\:{is} \\ $$$${the}\:{sum}\:{of}\:{horizontal}\:{and}\:{vertical} \\ $$$${projection}\:\left({a}+{b}\right).\:{the}\:{steps}\:{may}\:{be} \\ $$$${irregular}.\:{for}\:{example}\:{the}\:{red}\:{path}, \\ $$$${the}\:{blue}\:{path}\:{and}\:{the}\:{green}\:{path}\:{all} \\ $$$${have}\:{the}\:{same}\:{length}. \\ $$

Commented by mr W last updated on 29/Jul/19

Commented by Tawa1 last updated on 29/Jul/19

God bless you sir. i appreciate

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{appreciate} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com