Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 65380 by ajfour last updated on 29/Jul/19

Commented by ajfour last updated on 29/Jul/19

Find radius r of a circle whose  center is on the circumference  of the unit circle and whose  arc length within the shown  unit radius circle is a maximum.  (what if the first condition not  be imposed, but still center be  outside the unit circle ?)

$${Find}\:{radius}\:{r}\:{of}\:{a}\:{circle}\:{whose} \\ $$$${center}\:{is}\:{on}\:{the}\:{circumference} \\ $$$${of}\:{the}\:{unit}\:{circle}\:{and}\:{whose} \\ $$$${arc}\:{length}\:{within}\:{the}\:{shown} \\ $$$${unit}\:{radius}\:{circle}\:{is}\:{a}\:{maximum}. \\ $$$$\left({what}\:{if}\:{the}\:{first}\:{condition}\:{not}\right. \\ $$$${be}\:{imposed},\:{but}\:{still}\:{center}\:{be} \\ $$$$\left.{outside}\:{the}\:{unit}\:{circle}\:?\right) \\ $$

Answered by ajfour last updated on 29/Jul/19

Commented by ajfour last updated on 29/Jul/19

x^2 +y^2 =1  x=rsin θ , y=−c+rcos θ  ⇒ r^2 −2crcos θ+c^2 =1  cos θ=((r^2 +c^2 −1)/(2cr))  L=2rcos^(−1) (((r^2 +c^2 −1)/(2cr)))  ((∂(L/2))/∂c)=0  ⇒  (r/(√(1−(((r^2 +c^2 −1)/(2cr)))^2 )))×(1/(2r))×(((c^2 −r^2 +1))/c^2 )  ⇒  c^2 =r^2 −1     ....(i)  ((∂(L/2))/∂r)=0 ⇒  cos^(−1) (((r^2 +c^2 −1)/(2cr)))=r×(1/(√(1−(((r^2 +c^2 −1)/(2cr)))^2 )))×(1/(2c))×(((r^2 −c^2 +1))/r^2 )  using (i) in above eq.  cos^(−1) (((√(r^2 −1))/r))=(1/(√(r^2 −1)))  ......

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${x}={r}\mathrm{sin}\:\theta\:,\:{y}=−{c}+{r}\mathrm{cos}\:\theta \\ $$$$\Rightarrow\:{r}^{\mathrm{2}} −\mathrm{2}{cr}\mathrm{cos}\:\theta+{c}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{cos}\:\theta=\frac{{r}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{cr}} \\ $$$${L}=\mathrm{2}{r}\mathrm{cos}^{−\mathrm{1}} \left(\frac{{r}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{cr}}\right) \\ $$$$\frac{\partial\left({L}/\mathrm{2}\right)}{\partial{c}}=\mathrm{0}\:\:\Rightarrow \\ $$$$\frac{{r}}{\sqrt{\mathrm{1}−\left(\frac{{r}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{cr}}\right)^{\mathrm{2}} }}×\frac{\mathrm{1}}{\mathrm{2}{r}}×\frac{\left({c}^{\mathrm{2}} −{r}^{\mathrm{2}} +\mathrm{1}\right)}{{c}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:{c}^{\mathrm{2}} ={r}^{\mathrm{2}} −\mathrm{1}\:\:\:\:\:....\left({i}\right) \\ $$$$\frac{\partial\left({L}/\mathrm{2}\right)}{\partial{r}}=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{cos}^{−\mathrm{1}} \left(\frac{{r}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{cr}}\right)={r}×\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\left(\frac{{r}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{cr}}\right)^{\mathrm{2}} }}×\frac{\mathrm{1}}{\mathrm{2}{c}}×\frac{\left({r}^{\mathrm{2}} −{c}^{\mathrm{2}} +\mathrm{1}\right)}{{r}^{\mathrm{2}} } \\ $$$${using}\:\left({i}\right)\:{in}\:{above}\:{eq}. \\ $$$$\mathrm{cos}^{−\mathrm{1}} \left(\frac{\sqrt{{r}^{\mathrm{2}} −\mathrm{1}}}{{r}}\right)=\frac{\mathrm{1}}{\sqrt{{r}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$...... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com