Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 65383 by mathmax by abdo last updated on 29/Jul/19

1) calculate ∫_0 ^∞      (dx/(1+e^(nx) ))   with n integr natural  and n≥1  2) conclude the value of Σ_(k=1) ^∞   (((−1)^(k−1) )/k)

$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+{e}^{{nx}} }\:\:\:{with}\:{n}\:{integr}\:{natural}\:\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{conclude}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}} \\ $$

Commented by mathmax by abdo last updated on 30/Jul/19

1) let A_n =∫_0 ^∞   (dx/(1+e^(nx) ))  changement  e^(nx)  =t vive nx =lnt ⇒  A_n =∫_1 ^(+∞)   (dt/(nt(1+t))) =(1/n)∫_1 ^(+∞) {(1/t)−(1/(t+1))}dt =(1/n)[ln∣(t/(t+1))∣]_1 ^(+∞)   =(1/n){−ln((1/2))} =((ln(2))/n)  2) we have A_n =∫_0 ^∞   (dx/(1+e^(nx) )) =∫_0 ^∞   (e^(−nx) /(1+e^(−nx) ))dx  =∫_0 ^∞  e^(−nx) {Σ_(k=0) ^∞  (−1)^k  e^(−knx) } =Σ_(k=0) ^∞  (−1)^k  ∫_0 ^∞  e^(−(n+kn)x) dx  =Σ_(k=0) ^∞  (−1)^k [−(1/(n(k+1)))e^(−(n+kn)x) ]_0 ^(+∞)  =(1/n)Σ_(k=0) ^∞   (((−1)^k )/(k+1))  =(1/n) Σ_(k=1) ^∞  (((−1)^(k−1) )/k)   but A_n =((ln(2))/n) ⇒Σ_(k=1) ^∞  (((−1)^(k−1) )/k) =ln(2).

$$\left.\mathrm{1}\right)\:{let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{e}^{{nx}} }\:\:{changement}\:\:{e}^{{nx}} \:={t}\:{vive}\:{nx}\:={lnt}\:\Rightarrow \\ $$$${A}_{{n}} =\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{{nt}\left(\mathrm{1}+{t}\right)}\:=\frac{\mathrm{1}}{{n}}\int_{\mathrm{1}} ^{+\infty} \left\{\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right\}{dt}\:=\frac{\mathrm{1}}{{n}}\left[{ln}\mid\frac{{t}}{{t}+\mathrm{1}}\mid\right]_{\mathrm{1}} ^{+\infty} \\ $$$$=\frac{\mathrm{1}}{{n}}\left\{−{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right\}\:=\frac{{ln}\left(\mathrm{2}\right)}{{n}} \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{e}^{{nx}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{nx}} }{\mathrm{1}+{e}^{−{nx}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \left\{\sum_{{k}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{k}} \:{e}^{−{knx}} \right\}\:=\sum_{{k}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{k}} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({n}+{kn}\right){x}} {dx} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{k}} \left[−\frac{\mathrm{1}}{{n}\left({k}+\mathrm{1}\right)}{e}^{−\left({n}+{kn}\right){x}} \right]_{\mathrm{0}} ^{+\infty} \:=\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:\:\:{but}\:{A}_{{n}} =\frac{{ln}\left(\mathrm{2}\right)}{{n}}\:\Rightarrow\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:={ln}\left(\mathrm{2}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com