All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 65386 by mathmax by abdo last updated on 29/Jul/19
calculate∑k=1∞(−1)k−199k−1
Commented by mathmax by abdo last updated on 31/Jul/19
letI=∫1+∞dx1+x99cha7gementx=1tgiveI=−∫0111+1t99(−dtt2)=∫01t99t2(1+t99)dt=∫01t971+t99dt=∫01t97∑k=0∞(−1)kt99kdt=∑k=0∞(−1)k∫01t99k+97dt=∑k=0∞(−1)k[199k+98t99k+98]01=∑k=0∞(−1)k99k+98=k=p−1∑p=1∞(−1)p−199(p−1)+98=∑p=1∞(−1)p−199p−1⇒∑k=1∞(−1)k−199k−1=∫1+∞dx1+x99∫1+∞dx1+x99=∫10(....)dx+∫0∞dx1+x99=∫0∞dx1+x99−∫01dx1+x99changementx=t199give∫0∞dx1+x99=∫0∞11+t199t199−1dt=199∫0∞t199−11+tdt=199πsin(π99)=π99sin(π99)∫01dx1+x99=∫01∑n=0∞(−1)nx99ndx=∑n=0∞(−1)n∫01x99ndx=∑n=0∞(−1)n[199n+1x99n+1]01=∑n=0∞(−1)n99n+1=S=1−1100+1199−13.99+1+....⇒∑k=1∞(−1)k−199k−1=π99sin(π99)−S
Terms of Service
Privacy Policy
Contact: info@tinkutara.com