Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65401 by mathmax by abdo last updated on 29/Jul/19

let f(x,y)=(x+y)(√(x+y−1))  calculate  ∫∫_D f(x,y)dxdy with   D ={(x,y)∈R^2 /  1≤x≤2  and   1≤y≤(√3)}

letf(x,y)=(x+y)x+y1calculateDf(x,y)dxdywithD={(x,y)R2/1x2and1y3}

Commented by mathmax by abdo last updated on 01/Aug/19

∫∫_D f(x,y)dxdy =∫_1 ^(√3) (∫_1 ^2 (x+y)(√(x+y−1))dx)dy=∫_1 ^(√3) A(y)dy  changement (√(x+y−1))=t give x+y−1=t^2  ⇒x =t^2 −y+1 ⇒  A(y) =∫_(√y) ^(√(y+1)) (t^2 −y+1+y)t(2t)dt  =2 ∫_(√y) ^(√(y+1)) (t^4 +t^2 )dt =2[(t^5 /5)+(t^3 /3)]_(√y) ^(√(y+1))  =2{((((√(y+1)))^5 )/5)+((((√(y+1)))^3 )/3)  −((((√y))^5 )/5)−((((√y))^3 )/3) =2{ (((y+1)^2 (√(y+1)))/5) +(((y+1)(√(y+1)))/3)−((y^2 (√y))/5)−((y(√y))/3)} ⇒  ∫∫_D f(x,y)dxdy =(2/5)∫_1 ^(√3) (y+1)^2 (√(y+1)) dy +(2/3)∫_1 ^(√3) (y+1)(√(y+1))dy  −(2/5) ∫_1 ^(√3) y^2 (√y)dy  −(2/3) ∫_1 ^(√3) y(√y)dy   changement (√(y+1))=u give y+1 =u^2  ⇒  ∫_1 ^(√3) (y+1)^2 (√(y+1))dy =∫_(√2) ^(√((√3)+1)) u^4 u (2u)du =2 ∫_(√2) ^(√((√3)+1)) u^6 du   =(2/7)[u^7 ]_(√2) ^(√((√3)+1))  =(2/7){  ((√((√3)+1)))^7 −((√2))^7 }  ∫_1 ^(√3) (y+1)(√(y+1))dy =∫_(√2) ^(√((√3)+1)) u^2 u(2udu) =2 ∫_(√2) ^(√((√3)+1))   u^4 du  =(2/5){((√((√3)+1)))^5 −((√2))^5 }  also changement (√y)=u give y=u^2   ⇒∫_1 ^(√3) y^2 (√y)dy =∫_1 ^(√(√3)) u^4 (u)(2udu) =2 ∫_1 ^(√(√3)) u^6 du =(2/7)[((√(√3)))^7 −1)  ∫_1 ^(√3) y(√y)dy =∫_1 ^(√(√3))  u^2 u(2u)du =2 ∫_1 ^(√(√3)) u^4 xu =(2/5){ ((√(√3)))^5 −1}  the value of this integral is known

Df(x,y)dxdy=13(12(x+y)x+y1dx)dy=13A(y)dychangementx+y1=tgivex+y1=t2x=t2y+1A(y)=yy+1(t2y+1+y)t(2t)dt=2yy+1(t4+t2)dt=2[t55+t33]yy+1=2{(y+1)55+(y+1)33(y)55(y)33=2{(y+1)2y+15+(y+1)y+13y2y5yy3}Df(x,y)dxdy=2513(y+1)2y+1dy+2313(y+1)y+1dy2513y2ydy2313yydychangementy+1=ugivey+1=u213(y+1)2y+1dy=23+1u4u(2u)du=223+1u6du=27[u7]23+1=27{(3+1)7(2)7}13(y+1)y+1dy=23+1u2u(2udu)=223+1u4du=25{(3+1)5(2)5}alsochangementy=ugivey=u213y2ydy=13u4(u)(2udu)=213u6du=27[(3)71)13yydy=13u2u(2u)du=213u4xu=25{(3)51}thevalueofthisintegralisknown

Terms of Service

Privacy Policy

Contact: info@tinkutara.com