Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65455 by mathmax by abdo last updated on 30/Jul/19

find U_n = ∫_0 ^(+∞)    (((−1)^x )/(2^x^2  (x^2  +4n^2 )))dx     (n from N and n≥1)  study nature of the serie  Σ 2^n^2  U_n

$${find}\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{x}} }{\mathrm{2}^{{x}^{\mathrm{2}} } \left({x}^{\mathrm{2}} \:+\mathrm{4}{n}^{\mathrm{2}} \right)}{dx}\:\:\:\:\:\left({n}\:{from}\:{N}\:{and}\:{n}\geqslant\mathrm{1}\right) \\ $$$${study}\:{nature}\:{of}\:{the}\:{serie}\:\:\Sigma\:\mathrm{2}^{{n}^{\mathrm{2}} } {U}_{{n}} \\ $$

Commented by mathmax by abdo last updated on 31/Jul/19

we have U_n =∫_0 ^∞   ((2^(−x^2 ) (−1)^x )/((x^2  +4n^2 ))) =∫_0 ^∞   ((2^(−x^2 ) e^(iπx) )/((x^2  +4n^2 )))  =(1/2) ∫_(−∞) ^(+∞)   ((2^(−x^2 ) e^(iπx) )/(x^2  +4n^2 ))  let ϕ(z) =((2^(−z^2 ) e^(iπz) )/(z^2  +4n^2 )) ⇒ϕ(z) =((2^(−z^2 ) e^(iπz) )/((z−2ni)(z+2ni)))  the poles of ϕ are 2ni and −2ni  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,2ni)  Res(ϕ,2ni) =lim_(z→2ni)   (z−2ni)ϕ(z) =((2^(−(2ni)^2 ) e^(iπ(2ni)) )/(4ni))  =((2^(4n^2 ) e^(−2nπ) )/(4ni)) ⇒∫_(−∞) ^(+∞) ϕ(z)dz =2iπ ((2^(4n^2 ) e^(−2nπ) )/(4ni)) =(π/(2n)) 2^(4n^2 ) e^(−2nπ)  ⇒  U_n =(π/(4n)) 2^(4n^2 )  e^(−2nπ)

$${we}\:{have}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}^{−{x}^{\mathrm{2}} } \left(−\mathrm{1}\right)^{{x}} }{\left({x}^{\mathrm{2}} \:+\mathrm{4}{n}^{\mathrm{2}} \right)}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}^{−{x}^{\mathrm{2}} } {e}^{{i}\pi{x}} }{\left({x}^{\mathrm{2}} \:+\mathrm{4}{n}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{2}^{−{x}^{\mathrm{2}} } {e}^{{i}\pi{x}} }{{x}^{\mathrm{2}} \:+\mathrm{4}{n}^{\mathrm{2}} }\:\:{let}\:\varphi\left({z}\right)\:=\frac{\mathrm{2}^{−{z}^{\mathrm{2}} } {e}^{{i}\pi{z}} }{{z}^{\mathrm{2}} \:+\mathrm{4}{n}^{\mathrm{2}} }\:\Rightarrow\varphi\left({z}\right)\:=\frac{\mathrm{2}^{−{z}^{\mathrm{2}} } {e}^{{i}\pi{z}} }{\left({z}−\mathrm{2}{ni}\right)\left({z}+\mathrm{2}{ni}\right)} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:\mathrm{2}{ni}\:{and}\:−\mathrm{2}{ni}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\mathrm{2}{ni}\right) \\ $$$${Res}\left(\varphi,\mathrm{2}{ni}\right)\:={lim}_{{z}\rightarrow\mathrm{2}{ni}} \:\:\left({z}−\mathrm{2}{ni}\right)\varphi\left({z}\right)\:=\frac{\mathrm{2}^{−\left(\mathrm{2}{ni}\right)^{\mathrm{2}} } {e}^{{i}\pi\left(\mathrm{2}{ni}\right)} }{\mathrm{4}{ni}} \\ $$$$=\frac{\mathrm{2}^{\mathrm{4}{n}^{\mathrm{2}} } {e}^{−\mathrm{2}{n}\pi} }{\mathrm{4}{ni}}\:\Rightarrow\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{\mathrm{2}^{\mathrm{4}{n}^{\mathrm{2}} } {e}^{−\mathrm{2}{n}\pi} }{\mathrm{4}{ni}}\:=\frac{\pi}{\mathrm{2}{n}}\:\mathrm{2}^{\mathrm{4}{n}^{\mathrm{2}} } {e}^{−\mathrm{2}{n}\pi} \:\Rightarrow \\ $$$${U}_{{n}} =\frac{\pi}{\mathrm{4}{n}}\:\mathrm{2}^{\mathrm{4}{n}^{\mathrm{2}} } \:{e}^{−\mathrm{2}{n}\pi} \\ $$

Commented by mathmax by abdo last updated on 31/Jul/19

2^n^2   U_n =(π/(4n)) 2^(5n^2 )  e^(−2nπ)  =(π/(4n)) e^(5n^2 ln(2)−2nπ)   =(π/(4n)) e^(n^2 (5ln(2)−((2π)/n)))   lim_(n→+∞)   2^n^2  U_n =+∞ ⇒Σ 2^n^2   U_n  diverges

$$\mathrm{2}^{{n}^{\mathrm{2}} } \:{U}_{{n}} =\frac{\pi}{\mathrm{4}{n}}\:\mathrm{2}^{\mathrm{5}{n}^{\mathrm{2}} } \:{e}^{−\mathrm{2}{n}\pi} \:=\frac{\pi}{\mathrm{4}{n}}\:{e}^{\mathrm{5}{n}^{\mathrm{2}} {ln}\left(\mathrm{2}\right)−\mathrm{2}{n}\pi} \:\:=\frac{\pi}{\mathrm{4}{n}}\:{e}^{{n}^{\mathrm{2}} \left(\mathrm{5}{ln}\left(\mathrm{2}\right)−\frac{\mathrm{2}\pi}{{n}}\right)} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:\mathrm{2}^{{n}^{\mathrm{2}} } {U}_{{n}} =+\infty\:\Rightarrow\Sigma\:\mathrm{2}^{{n}^{\mathrm{2}} } \:{U}_{{n}} \:{diverges} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com