All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 65455 by mathmax by abdo last updated on 30/Jul/19
findUn=∫0+∞(−1)x2x2(x2+4n2)dx(nfromNandn⩾1)studynatureoftheserieΣ2n2Un
Commented by mathmax by abdo last updated on 31/Jul/19
wehaveUn=∫0∞2−x2(−1)x(x2+4n2)=∫0∞2−x2eiπx(x2+4n2)=12∫−∞+∞2−x2eiπxx2+4n2letφ(z)=2−z2eiπzz2+4n2⇒φ(z)=2−z2eiπz(z−2ni)(z+2ni)thepolesofφare2niand−2niresidustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,2ni)Res(φ,2ni)=limz→2ni(z−2ni)φ(z)=2−(2ni)2eiπ(2ni)4ni=24n2e−2nπ4ni⇒∫−∞+∞φ(z)dz=2iπ24n2e−2nπ4ni=π2n24n2e−2nπ⇒Un=π4n24n2e−2nπ
2n2Un=π4n25n2e−2nπ=π4ne5n2ln(2)−2nπ=π4nen2(5ln(2)−2πn)limn→+∞2n2Un=+∞⇒Σ2n2Undiverges
Terms of Service
Privacy Policy
Contact: info@tinkutara.com