Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65455 by mathmax by abdo last updated on 30/Jul/19

find U_n = ∫_0 ^(+∞)    (((−1)^x )/(2^x^2  (x^2  +4n^2 )))dx     (n from N and n≥1)  study nature of the serie  Σ 2^n^2  U_n

findUn=0+(1)x2x2(x2+4n2)dx(nfromNandn1)studynatureoftheserieΣ2n2Un

Commented by mathmax by abdo last updated on 31/Jul/19

we have U_n =∫_0 ^∞   ((2^(−x^2 ) (−1)^x )/((x^2  +4n^2 ))) =∫_0 ^∞   ((2^(−x^2 ) e^(iπx) )/((x^2  +4n^2 )))  =(1/2) ∫_(−∞) ^(+∞)   ((2^(−x^2 ) e^(iπx) )/(x^2  +4n^2 ))  let ϕ(z) =((2^(−z^2 ) e^(iπz) )/(z^2  +4n^2 )) ⇒ϕ(z) =((2^(−z^2 ) e^(iπz) )/((z−2ni)(z+2ni)))  the poles of ϕ are 2ni and −2ni  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,2ni)  Res(ϕ,2ni) =lim_(z→2ni)   (z−2ni)ϕ(z) =((2^(−(2ni)^2 ) e^(iπ(2ni)) )/(4ni))  =((2^(4n^2 ) e^(−2nπ) )/(4ni)) ⇒∫_(−∞) ^(+∞) ϕ(z)dz =2iπ ((2^(4n^2 ) e^(−2nπ) )/(4ni)) =(π/(2n)) 2^(4n^2 ) e^(−2nπ)  ⇒  U_n =(π/(4n)) 2^(4n^2 )  e^(−2nπ)

wehaveUn=02x2(1)x(x2+4n2)=02x2eiπx(x2+4n2)=12+2x2eiπxx2+4n2letφ(z)=2z2eiπzz2+4n2φ(z)=2z2eiπz(z2ni)(z+2ni)thepolesofφare2niand2niresidustheoremgive+φ(z)dz=2iπRes(φ,2ni)Res(φ,2ni)=limz2ni(z2ni)φ(z)=2(2ni)2eiπ(2ni)4ni=24n2e2nπ4ni+φ(z)dz=2iπ24n2e2nπ4ni=π2n24n2e2nπUn=π4n24n2e2nπ

Commented by mathmax by abdo last updated on 31/Jul/19

2^n^2   U_n =(π/(4n)) 2^(5n^2 )  e^(−2nπ)  =(π/(4n)) e^(5n^2 ln(2)−2nπ)   =(π/(4n)) e^(n^2 (5ln(2)−((2π)/n)))   lim_(n→+∞)   2^n^2  U_n =+∞ ⇒Σ 2^n^2   U_n  diverges

2n2Un=π4n25n2e2nπ=π4ne5n2ln(2)2nπ=π4nen2(5ln(2)2πn)limn+2n2Un=+Σ2n2Undiverges

Terms of Service

Privacy Policy

Contact: info@tinkutara.com