Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 65587 by naka3546 last updated on 31/Jul/19

Prove  that       1^3  + 2^3  + 3^3  + … + n^3   =  (1+2+3+...+n)^2

$${Prove}\:\:{that} \\ $$$$\:\:\:\:\:\mathrm{1}^{\mathrm{3}} \:+\:\mathrm{2}^{\mathrm{3}} \:+\:\mathrm{3}^{\mathrm{3}} \:+\:\ldots\:+\:{n}^{\mathrm{3}} \:\:=\:\:\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}\right)^{\mathrm{2}} \\ $$

Commented by naka3546 last updated on 31/Jul/19

No  using  Mathematical  Induction .

$${No}\:\:{using}\:\:{Mathematical}\:\:{Induction}\:. \\ $$

Commented by Tanmay chaudhury last updated on 31/Jul/19

Commented by Tanmay chaudhury last updated on 31/Jul/19

S_3 =3∫S_2 dn+n×B_3   =3∫((n(n+1)(2n+1))/6)dn+n×0  =(1/2)∫n(2n^2 +3n+1)dn  =(1/2)∫(2n^3 +3n^2 +n)  dn  (1/2)(((2n^4 )/4)+((3n^3 )/3)+(n^2 /2))  (1/2)(((6n^4 +12n^3 +6n^2 )/(12)))  (1/4)(n^4 +2n^3 +n^2 )  (n^2 /4)(n^2 +2n+1)  {((n(n+1))/2)}^2 Answer

$${S}_{\mathrm{3}} =\mathrm{3}\int{S}_{\mathrm{2}} {dn}+{n}×{B}_{\mathrm{3}} \\ $$$$=\mathrm{3}\int\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}{dn}+{n}×\mathrm{0} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{n}\left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{1}\right){dn} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{2}{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +{n}\right)\:\:{dn} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}{n}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mathrm{3}{n}^{\mathrm{3}} }{\mathrm{3}}+\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{6}{n}^{\mathrm{4}} +\mathrm{12}{n}^{\mathrm{3}} +\mathrm{6}{n}^{\mathrm{2}} }{\mathrm{12}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left({n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{3}} +{n}^{\mathrm{2}} \right) \\ $$$$\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\left({n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{1}\right) \\ $$$$\left\{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}^{\mathrm{2}} {Answer} \\ $$

Commented by Tanmay chaudhury last updated on 31/Jul/19

Answered by som(math1967) last updated on 31/Jul/19

let s=1^3 +2^3 +3^3 +....+n^3   now n^4 −(n−1)^4 =4n^3 −6n^2 +4n−1  ∴1^4 −0=4.1^3 −6.1^2 +4.1 −1  2^4 −1^4 =4.2^3 −6.2^2 +4.2−1  .........  n^4 −(n−1)^4 =4n^3 −6n^2 +4n−1  add  n^4 =4.(1^3 +2^3 +.....n^3 )−6(1^2 +2^2 +...n^2 )                                                               +4(1+2+..n)−1×n  n^4 =4s−6×((n(n+1)(2n+1))/6) +4×((n(n+1))/2)−n  4s=n^4 +n(n+1)(2n+1) −2n(n+1)+n  4s=n(n^3 +1) +n(n+1)(2n+1−2)  4s=n(n+1)(n^2 −n+1)+n(n+1)(2n−1)  4s=n(n+1)(n^2 −n+1+2n−1)  4s=n(n+1)n(n+1)    ∴s={((n(n+1))/2)}^2   ∴s=(1+2+3+.......n)^2

$${let}\:{s}=\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +....+{n}^{\mathrm{3}} \\ $$$${now}\:{n}^{\mathrm{4}} −\left({n}−\mathrm{1}\right)^{\mathrm{4}} =\mathrm{4}{n}^{\mathrm{3}} −\mathrm{6}{n}^{\mathrm{2}} +\mathrm{4}{n}−\mathrm{1} \\ $$$$\therefore\mathrm{1}^{\mathrm{4}} −\mathrm{0}=\mathrm{4}.\mathrm{1}^{\mathrm{3}} −\mathrm{6}.\mathrm{1}^{\mathrm{2}} +\mathrm{4}.\mathrm{1}\:−\mathrm{1} \\ $$$$\mathrm{2}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} =\mathrm{4}.\mathrm{2}^{\mathrm{3}} −\mathrm{6}.\mathrm{2}^{\mathrm{2}} +\mathrm{4}.\mathrm{2}−\mathrm{1} \\ $$$$......... \\ $$$${n}^{\mathrm{4}} −\left({n}−\mathrm{1}\right)^{\mathrm{4}} =\mathrm{4}{n}^{\mathrm{3}} −\mathrm{6}{n}^{\mathrm{2}} +\mathrm{4}{n}−\mathrm{1} \\ $$$${add} \\ $$$${n}^{\mathrm{4}} =\mathrm{4}.\left(\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +.....{n}^{\mathrm{3}} \right)−\mathrm{6}\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +...{n}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{4}\left(\mathrm{1}+\mathrm{2}+..{n}\right)−\mathrm{1}×{n} \\ $$$${n}^{\mathrm{4}} =\mathrm{4}{s}−\mathrm{6}×\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}\:+\mathrm{4}×\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}−{n} \\ $$$$\mathrm{4}{s}={n}^{\mathrm{4}} +{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\:−\mathrm{2}{n}\left({n}+\mathrm{1}\right)+{n} \\ $$$$\mathrm{4}{s}={n}\left({n}^{\mathrm{3}} +\mathrm{1}\right)\:+{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}−\mathrm{2}\right) \\ $$$$\mathrm{4}{s}={n}\left({n}+\mathrm{1}\right)\left({n}^{\mathrm{2}} −{n}+\mathrm{1}\right)+{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}−\mathrm{1}\right) \\ $$$$\mathrm{4}{s}={n}\left({n}+\mathrm{1}\right)\left({n}^{\mathrm{2}} −{n}+\mathrm{1}+\mathrm{2}{n}−\mathrm{1}\right) \\ $$$$\mathrm{4}{s}={n}\left({n}+\mathrm{1}\right){n}\left({n}+\mathrm{1}\right) \\ $$$$ \\ $$$$\therefore{s}=\left\{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}^{\mathrm{2}} \\ $$$$\therefore{s}=\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+.......{n}\right)^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com