Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65679 by mathmax by abdo last updated on 01/Aug/19

let  A_n =∫_(−∞) ^(+∞)    ((cos(2^n x))/((x^2 +3)^2 ))dx  1) calculate A_n  interms of n  2)find nsture of the serie ΣA_n     and Σn^n  A_n

$${let}\:\:{A}_{{n}} =\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}^{{n}} {x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right){find}\:{nsture}\:{of}\:{the}\:{serie}\:\Sigma{A}_{{n}} \:\:\:\:{and}\:\Sigma{n}^{{n}} \:{A}_{{n}} \\ $$

Commented by mathmax by abdo last updated on 02/Aug/19

2) Σ_(n=0) ^∞  A_n  =(π/6)Σ_(n=0) ^∞  2^n  e^(−(√3)2^n )   +((π(√3))/(18)) Σ_(n=0) ^∞  e^(−(√3)2^n )   those series  converges  ⇒Σ A_n  converges  we can verify that lim_(n→+∞) n^n  A_n  ≠0 ⇒Σ A_n diverges

$$\left.\mathrm{2}\right)\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} \:=\frac{\pi}{\mathrm{6}}\sum_{{n}=\mathrm{0}} ^{\infty} \:\mathrm{2}^{{n}} \:{e}^{−\sqrt{\mathrm{3}}\mathrm{2}^{{n}} } \:\:+\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{18}}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−\sqrt{\mathrm{3}}\mathrm{2}^{{n}} } \\ $$$${those}\:{series}\:\:{converges}\:\:\Rightarrow\Sigma\:{A}_{{n}} \:{converges} \\ $$$${we}\:{can}\:{verify}\:{that}\:{lim}_{{n}\rightarrow+\infty} {n}^{{n}} \:{A}_{{n}} \:\neq\mathrm{0}\:\Rightarrow\Sigma\:{A}_{{n}} {diverges} \\ $$

Commented by mathmax by abdo last updated on 02/Aug/19

1) we have A_n =∫_(−∞) ^(+∞)   ((cos(2^n x))/((x^2  +3)^2 ))dx ⇒A_n =Re(∫_(−∞) ^(+∞)  (e^(i2^n x) /((x^2  +3)^2 ))dx)  let ϕ(z) =(e^(i2^n z) /((z^2  +3)^2 ))  poles of ϕ?  ϕ(z) =(e^(i2^n z) /((z−i(√3))^2 (z+i(√3))^2 ))  the poles of ϕ are +^− i(√3)(doubles)  residus theorem give ∫_(−∞) ^(+∞) ϕ(z)dz =2iπRes(ϕ,i(√3))  Res(ϕ,i(√3)) =lim_(z→i(√3))    (1/((2−1)!)){(z−i(√3))^2 ϕ(z)}^((1))   =lim_(z→i(√3))     {(e^(i2^n z) /((z+i(√3))^2 ))}^((1)) =lim_(z→i(√3))    ((i2^n e^(i2^n z) (z+i(√3))^2 −2(z+i(√3))e^(i2^n z) )/((z+i(√3))^4 ))  =lim_(z→i(√3))    ((i2^n e^(i2^n z) (z+i(√3))−2e^(i2^n z) )/((z+i(√3))^3 ))  =((i2^n  e^(i2^n (i(√3))) (2i(√3))−2e^(i2^n (i(√3))) )/((2i(√3))^3 ))  =((−2(√3)2^n  e^(−2^n (√3)) −2 e^(−2^n (√3)) )/((−8i)(3(√3))))  =(((2(√3)2^n  +2)e^(−2^n (√3)) )/(24i(√3))) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((((√3)2^n  +1)e^(−2^n (√3)) )/(12i(√3)))  =(π/(6(√3)))(  (√3)2^n  +1)e^(−2^n (√3))    ⇒ A_n =(π/(18)){3. 2^n  +(√3))e^(−(√3)2^n )

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{A}_{{n}} =\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\mathrm{2}^{{n}} {x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx}\:\Rightarrow{A}_{{n}} ={Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{i}\mathrm{2}^{{n}} {x}} }{\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dx}\right) \\ $$$${let}\:\varphi\left({z}\right)\:=\frac{{e}^{{i}\mathrm{2}^{{n}} {z}} }{\left({z}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\:\:{poles}\:{of}\:\varphi? \\ $$$$\varphi\left({z}\right)\:=\frac{{e}^{{i}\mathrm{2}^{{n}} {z}} }{\left({z}−{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \left({z}+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\:\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}{i}\sqrt{\mathrm{3}}\left({doubles}\right) \\ $$$${residus}\:{theorem}\:{give}\:\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right) \\ $$$${Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right)\:={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\:\:\left\{\frac{{e}^{{i}\mathrm{2}^{{n}} {z}} }{\left({z}+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} ={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\:\frac{{i}\mathrm{2}^{{n}} {e}^{{i}\mathrm{2}^{{n}} {z}} \left({z}+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{2}\left({z}+{i}\sqrt{\mathrm{3}}\right){e}^{{i}\mathrm{2}^{{n}} {z}} }{\left({z}+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\:\frac{{i}\mathrm{2}^{{n}} {e}^{{i}\mathrm{2}^{{n}} {z}} \left({z}+{i}\sqrt{\mathrm{3}}\right)−\mathrm{2}{e}^{{i}\mathrm{2}^{{n}} {z}} }{\left({z}+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} } \\ $$$$=\frac{{i}\mathrm{2}^{{n}} \:{e}^{{i}\mathrm{2}^{{n}} \left({i}\sqrt{\mathrm{3}}\right)} \left(\mathrm{2}{i}\sqrt{\mathrm{3}}\right)−\mathrm{2}{e}^{{i}\mathrm{2}^{{n}} \left({i}\sqrt{\mathrm{3}}\right)} }{\left(\mathrm{2}{i}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }\:\:=\frac{−\mathrm{2}\sqrt{\mathrm{3}}\mathrm{2}^{{n}} \:{e}^{−\mathrm{2}^{{n}} \sqrt{\mathrm{3}}} −\mathrm{2}\:{e}^{−\mathrm{2}^{{n}} \sqrt{\mathrm{3}}} }{\left(−\mathrm{8}{i}\right)\left(\mathrm{3}\sqrt{\mathrm{3}}\right)} \\ $$$$=\frac{\left(\mathrm{2}\sqrt{\mathrm{3}}\mathrm{2}^{{n}} \:+\mathrm{2}\right){e}^{−\mathrm{2}^{{n}} \sqrt{\mathrm{3}}} }{\mathrm{24}{i}\sqrt{\mathrm{3}}}\:\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{\left(\sqrt{\mathrm{3}}\mathrm{2}^{{n}} \:+\mathrm{1}\right){e}^{−\mathrm{2}^{{n}} \sqrt{\mathrm{3}}} }{\mathrm{12}{i}\sqrt{\mathrm{3}}} \\ $$$$=\frac{\pi}{\mathrm{6}\sqrt{\mathrm{3}}}\left(\:\:\sqrt{\mathrm{3}}\mathrm{2}^{{n}} \:+\mathrm{1}\right){e}^{−\mathrm{2}^{{n}} \sqrt{\mathrm{3}}} \:\:\:\Rightarrow\:{A}_{{n}} =\frac{\pi}{\mathrm{18}}\left\{\mathrm{3}.\:\mathrm{2}^{{n}} \:+\sqrt{\mathrm{3}}\right){e}^{−\sqrt{\mathrm{3}}\mathrm{2}^{{n}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com