Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65770 by mathmax by abdo last updated on 03/Aug/19

let A_n =∫_0 ^(π/2)  cos^n xdx  1) calculate A_0 ,A_2  and A_3   2)calculate A_n interms of n  3) find ∫_0 ^(π/2)  cos^8 xdx

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{{n}} {xdx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{0}} ,{A}_{\mathrm{2}} \:{and}\:{A}_{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}} {interms}\:{of}\:{n} \\ $$$$\left.\mathrm{3}\right)\:{find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{8}} {xdx}\: \\ $$

Commented by ~ À ® @ 237 ~ last updated on 04/Aug/19

 A_0 =[x]_0_  ^(π/2) =(π/2)  2A_n  = 2∫_0 ^(π/2) (sinx)^(2((1/2))−1) (cosx)^(2(((n+1)/2))−1) dx=B((1/2).  ((n+1)/2))  Then A_n  = (1/2). ((Γ((1/2))Γ(((n+1)/2)))/(Γ(((n+2)/2))))  when using the Lagrange formula Π_(k=1) ^(p−1) Γ(z+(k/p))=(2π)^((p−1)/2) p^((1/2)−pz) Γ(pz)  Γ(n+(1/2))=(√(π )) ((Γ(2n))/2^(2n−1) )  ∀ n>1  so we can find   A_(2n) = ((√π)/2).((((√π) Γ(2n))/2^(2n−1) )/(Γ(n+1)))= (((2n−1)!)/(2^(2n)  n!)) π  A_(2n+1) = ((√π)/2). ((Γ(n+1))/((√π) .((Γ(2n+2))/2^(2n+1) )))=((2^(2n) .n!)/((2n+1)!))  So   A_1 =1      A_3 = ((2^2 .1!)/(3!))      A_8 =((7!π)/(2^8 4!))

$$\:{A}_{\mathrm{0}} =\left[{x}\right]_{\mathrm{0}_{} } ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{2}{A}_{{n}} \:=\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sinx}\right)^{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} \left({cosx}\right)^{\mathrm{2}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} {dx}={B}\left(\frac{\mathrm{1}}{\mathrm{2}}.\:\:\frac{{n}+\mathrm{1}}{\mathrm{2}}\right) \\ $$$${Then}\:{A}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}.\:\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{n}+\mathrm{2}}{\mathrm{2}}\right)} \\ $$$${when}\:{using}\:{the}\:{Lagrange}\:{formula}\:\underset{{k}=\mathrm{1}} {\overset{{p}−\mathrm{1}} {\prod}}\Gamma\left({z}+\frac{{k}}{{p}}\right)=\left(\mathrm{2}\pi\right)^{\frac{{p}−\mathrm{1}}{\mathrm{2}}} {p}^{\frac{\mathrm{1}}{\mathrm{2}}−{pz}} \Gamma\left({pz}\right) \\ $$$$\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\pi\:}\:\frac{\Gamma\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }\:\:\forall\:{n}>\mathrm{1} \\ $$$${so}\:{we}\:{can}\:{find}\: \\ $$$${A}_{\mathrm{2}{n}} =\:\frac{\sqrt{\pi}}{\mathrm{2}}.\frac{\frac{\sqrt{\pi}\:\Gamma\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }}{\Gamma\left({n}+\mathrm{1}\right)}=\:\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)!}{\mathrm{2}^{\mathrm{2}{n}} \:{n}!}\:\pi \\ $$$${A}_{\mathrm{2}{n}+\mathrm{1}} =\:\frac{\sqrt{\pi}}{\mathrm{2}}.\:\frac{\Gamma\left({n}+\mathrm{1}\right)}{\sqrt{\pi}\:.\frac{\Gamma\left(\mathrm{2}{n}+\mathrm{2}\right)}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }}=\frac{\mathrm{2}^{\mathrm{2}{n}} .{n}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$${So}\:\:\:{A}_{\mathrm{1}} =\mathrm{1}\:\:\:\:\:\:{A}_{\mathrm{3}} =\:\frac{\mathrm{2}^{\mathrm{2}} .\mathrm{1}!}{\mathrm{3}!}\:\:\:\:\:\:{A}_{\mathrm{8}} =\frac{\mathrm{7}!\pi}{\mathrm{2}^{\mathrm{8}} \mathrm{4}!}\:\: \\ $$

Commented by mathmax by abdo last updated on 04/Aug/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com