Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65805 by ~ À ® @ 237 ~ last updated on 04/Aug/19

  Prove that  I_n =∫_0 ^(π/2)    (dt/(1+(tant)^n ))  does not depend of the term n  deduces that  ∫_0 ^∞   (dx/((x^(2035) +1)(x^2 +1)))=(π/4)

ProvethatIn=0π2dt1+(tant)ndoesnotdependofthetermndeducesthat0dx(x2035+1)(x2+1)=π4

Commented by mathmax by abdo last updated on 04/Aug/19

I_n =∫_0 ^(π/2)   (dt/(1+(tant)^n ))  changement t =(π/2)−x give  I_n =−∫_0 ^(π/2)  ((−dx)/(1+(1/(tan^n x)))) =∫_0 ^(π/2)   ((tan^n x)/(1+tan^n x))dx =∫_0 ^(π/2)  ((1+tan^n x−1)/(1+tan^n x))dx  =(π/2) −I_n  ⇒ 2I_n =(π/2) ⇒ I_n =(π/4)  ∀n  changement tant =x give I_n =∫_0 ^∞    (dx/((1+x^2 )(1+x^n ))) ⇒  ∫_0 ^∞      (dx/((1+x^2 )(1+x^n ))) =(π/4)  let take n=2035 ⇒  ∫_0 ^∞     (dx/((x^(2035) +1)(1+x^2 ))) =(π/4)

In=0π2dt1+(tant)nchangementt=π2xgiveIn=0π2dx1+1tannx=0π2tannx1+tannxdx=0π21+tannx11+tannxdx=π2In2In=π2In=π4nchangementtant=xgiveIn=0dx(1+x2)(1+xn)0dx(1+x2)(1+xn)=π4lettaken=20350dx(x2035+1)(1+x2)=π4

Answered by Tanmay chaudhury last updated on 04/Aug/19

I(n)=∫_0 ^(π/2) ((cos^n t)/(sin^n t+cos^n t))dt.....(1)  =∫_0 ^(π/2) ((cos^n ((π/2)−t))/(sin^n ((π/2)−t)+cos^n ((π/2)−t)))dt  =∫_0 ^(π/2) ((sin^n t)/(cos^n t+sin^n t))dt.....(2)  2I(n)=∫_0 ^(π/2) dt.....(by adding (1) and 2)  I(n)=(1/2)×(π/2)=(π/4)

I(n)=0π2cosntsinnt+cosntdt.....(1)=0π2cosn(π2t)sinn(π2t)+cosn(π2t)dt=0π2sinntcosnt+sinntdt.....(2)2I(n)=0π2dt.....(byadding(1)and2)I(n)=12×π2=π4

Answered by Tanmay chaudhury last updated on 04/Aug/19

x=tana   dx=sec^2 ada  ∫_0 ^(π/2) ((sec^2 ada)/(tan^(2035) a+1))×(1/(sec^2 a))da  =(π/4)

x=tanadx=sec2ada0π2sec2adatan2035a+1×1sec2ada=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com