Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 65858 by ugwu Kingsley last updated on 05/Aug/19

Commented by mathmax by abdo last updated on 05/Aug/19

x+2y^′  +y =(x+2)^3  ⇒2y^′  +y =(x+2)^3 −x ⇒  2y^′  +y =x^3 +3x^2 (2) +3x(2)^2  +2^3 −x ⇒2y^′  +y =x^3  +6x^2  +11x+8(e)  (he) →2y^′  +y =0⇒2y^′  =−y ⇒(y^′ /y)=−(1/2) ⇒ln∣y∣ =−(x/2) +λ ⇒  y= Ke^(−(x/2))  let use mvc method  we have y^′  =K^(′ ) e^(−(x/2))  −(K/2)e^(−(x/2))   (e)⇒2K^′  e^(−(x/2)) −Ke^(−(x/2))  +Ke^(−(x/2))  =x^3  +6x^2  +11x +8 ⇒  K^′  =(1/2)(x^3  +6x^2  +11x+8)e^(x/2)   ⇒K(x) =(1/2)∫(x^3  +6x^2  +11x+8)e^(x/2) dx +c  =(1/2)∫ x^3  e^(x/2) dx +3 ∫ x^2  e^(x/2) dx +((11)/2)∫ xe^(x/2) dx +4 ∫ e^(x/2) dx+c  by parts  ∫ x^3  e^(x/2)  dx =2x^3 e^(x/2)  −∫ 3x^2 (2e^(x/2) )dx  =2x^3  e^(x/2) −6 ∫x^2 e^(x/2) dx and ∫ x^2  e^(x/2) dx =x^2 (2e^(x/2) )−∫2x(e^(x/2) )dx  =2x^2 e^(x/2)  −2 ∫ xe^(x/2) dx  ∫ x e^(x/2) dx =x(2e^(x/2) )−∫ (2e^(x/2) )dx =2x e^(x/2) −2 ∫ e^(x/2) dx  =2xe^(x/2) −2(2e^(x/2) ) =2xe^(x/2) −4 e^(x/(2 ))  ⇒  ∫ x^3  e^(x/2) dx =2x^3 e^(x/2) −6(2x^2 e^(x/2) −2(2xe^(x/2) −4 e^(x/2) ))  ={2x^3 −12x^2  +24x−48}e^(x/2)  ⇒  K(x) ={x^3 −6x^2  +12x−24}e^(x/2) [+3{2x^2 e^(x/2)  −2(2xe^(x/2) −4e^(x/2) )}  +((11)/2){2xe^(x/2) −4e^(x/2) } +4{2e^(x/2) } +c  y =K(x)e^(−(x/2))  ⇒y(x) =...

x+2y+y=(x+2)32y+y=(x+2)3x2y+y=x3+3x2(2)+3x(2)2+23x2y+y=x3+6x2+11x+8(e)(he)2y+y=02y=yyy=12lny=x2+λy=Kex2letusemvcmethodwehavey=Kex2K2ex2(e)2Kex2Kex2+Kex2=x3+6x2+11x+8K=12(x3+6x2+11x+8)ex2K(x)=12(x3+6x2+11x+8)ex2dx+c=12x3ex2dx+3x2ex2dx+112xex2dx+4ex2dx+cbypartsx3ex2dx=2x3ex23x2(2ex2)dx=2x3ex26x2ex2dxandx2ex2dx=x2(2ex2)2x(ex2)dx=2x2ex22xex2dxxex2dx=x(2ex2)(2ex2)dx=2xex22ex2dx=2xex22(2ex2)=2xex24ex2x3ex2dx=2x3ex26(2x2ex22(2xex24ex2))={2x312x2+24x48}ex2K(x)={x36x2+12x24}ex2[+3{2x2ex22(2xex24ex2)}+112{2xex24ex2}+4{2ex2}+cy=K(x)ex2y(x)=...

Commented by mathmax by abdo last updated on 05/Aug/19

2) x^2 y^′  +3xy =x^3  +2x^2  ⇒xy^′  +3y  =x^2  +2x (e)  (he) ⇒xy^′  +3y =0 ⇒xy^′  =−3y ⇒(y^′ /y) =((−3)/x) ⇒ln∣y∣ =−3ln∣x∣+λ ⇒  y(x) =(k/(∣x∣^3 ))    let find the solution on ]0,+∞[ ⇒y(x)=(k/x^3 )  mvc method →y^′ =(k^′ /x^3 ) +k(−3(x^2 /x^6 ))=(k^′ /x^3 )−((3k)/x^4 )    (e) ⇒(k^′ /x^2 )−((3k)/x^3 ) +((3k)/x^3 ) =x^2  +2x ⇒k^′  =x^4  +3x^3  ⇒k(x)=∫(x^4  +3x^3 )dx +c  ⇒k(x) =(x^5 /5) +(3/4)x^4  +c ⇒y(x)=(1/x^3 ){(x^5 /5) +(3/4)x^4  +c}  =(1/5)x^2  +(3/4)x +(c/x^3 ) .

2)x2y+3xy=x3+2x2xy+3y=x2+2x(e)(he)xy+3y=0xy=3yyy=3xlny=3lnx+λy(x)=kx3letfindthesolutionon]0,+[y(x)=kx3mvcmethody=kx3+k(3x2x6)=kx33kx4(e)kx23kx3+3kx3=x2+2xk=x4+3x3k(x)=(x4+3x3)dx+ck(x)=x55+34x4+cy(x)=1x3{x55+34x4+c}=15x2+34x+cx3.

Commented by mathmax by abdo last updated on 05/Aug/19

xy^′ −y =cos(4x)  (he) ⇒xy^′ −y =0 ⇒xy^′  =y ⇒(y^′ /y) =(1/x) ⇒ln∣y∣ =ln∣x∣ +λ ⇒  y =k ∣x∣   let find the solution on ]0,+∞[ ⇒y =kx  ⇒y^′ =k^′ x +k  (e) ⇒k^′ x^2  +kx−kx =cos(4x) ⇒k^′ x^2  =cos(4x) ⇒  k^′  =((cos(4x))/x^2 ) ⇒k(x) =∫  ((cos(4x))/x^2 )dx +c  by parts  ∫  ((cos(4x))/x^2 )dx =−(1/x)cos(4x)−∫ ((1/x))4sin(4x)dx  =−((cos(4x))/x)−4 ∫ ((sin(4x))/x)dx ⇒k(x) =−((cos(4x))/x)−4∫ ((sin(4x))/x)dx +c  ⇒y(x) =−cos(4x) −4x ∫^x  ((sin(4t))/t)dt +cx

xyy=cos(4x)(he)xyy=0xy=yyy=1xlny=lnx+λy=kxletfindthesolutionon]0,+[y=kxy=kx+k(e)kx2+kxkx=cos(4x)kx2=cos(4x)k=cos(4x)x2k(x)=cos(4x)x2dx+cbypartscos(4x)x2dx=1xcos(4x)(1x)4sin(4x)dx=cos(4x)x4sin(4x)xdxk(x)=cos(4x)x4sin(4x)xdx+cy(x)=cos(4x)4xxsin(4t)tdt+cx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com