Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 65859 by ajfour last updated on 05/Aug/19

x^4 +5x^2 +20x+104=0  solve for x.

$${x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{20}{x}+\mathrm{104}=\mathrm{0} \\ $$$${solve}\:{for}\:{x}. \\ $$

Answered by ajfour last updated on 05/Aug/19

a=5, b=20, c=104  p^6 +2ap^4 +(a^2 −4c)p^2 −b^2 =0  p^6 +10p^4 −391p^2 −400=0  ⇒  p^2 = −25, −1, 16   x^2 −px+(1/2)(p^2 +a+(b/p))=0  For  p^2 =−25_(−)  first let  p=5i   x^2 −5ix+(1/2)(−25+5−4i)=0   x^2 −5ix−10−2i=0  x=((5i±(√(−25+40+8i)))/2)    =((5i±(√(15+8i)))/2)  let  (r+mi)^2 =15+8i  ⇒  r^2 −m^2 +(2mr)i=15+8i  ⇒  r^2 −m^2 =15  ,  mr=4  ⇒ r^2 −((16)/r^2 )=15  ⇒  r^4 −15r^2 −16=0  ⇒  r^2 =16, −1   (but r^2 ≥0 ⇒ r^2 ≠−1)  ⇒  m=±1  ⇒  r+mi= ±(4+i)  so   x=((5i±(4+i))/2)   ⇒ x_1 =2+3i  , x_2 =−2+2i  and for p=−5i   x^2 +5ix+(1/2)(−25+5+4i)=0  x^2 +5ix−10+2i=0  x=((−5i±(√(−25+40−8i)))/2)     = ((−5i±(√(15−8i)))/2)  let  (r+mi)^2 =15−8i  ⇒ r^2 −m^2 =15 ,  mr=−4  ⇒  r^2 −((16)/r^2 )=15  ⇒ r^2 =16 , m=±1  ⇒  r+mi=±(4−i)  x=((−5i±(4−i))/2)  x_3 =2−3i  ,  x_4 =−2−2i  similarly for p=±1  Now for p=±4_(−)   x^2 ∓4x+(1/2)(21±5)=0  ⇒x^2 −4x+13=0 & x^2 +4x+8=0  ⇒ x_1 ,x_2 =2±3i  &  x_3 ,x_4 =−2±2i  (fine formula i developed;    handles all biquadratics with    real coefficients real well,    i dont just imagine!)

$${a}=\mathrm{5},\:{b}=\mathrm{20},\:{c}=\mathrm{104} \\ $$$${p}^{\mathrm{6}} +\mathrm{2}{ap}^{\mathrm{4}} +\left({a}^{\mathrm{2}} −\mathrm{4}{c}\right){p}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${p}^{\mathrm{6}} +\mathrm{10}{p}^{\mathrm{4}} −\mathrm{391}{p}^{\mathrm{2}} −\mathrm{400}=\mathrm{0} \\ $$$$\Rightarrow\:\:{p}^{\mathrm{2}} =\:−\mathrm{25},\:−\mathrm{1},\:\mathrm{16} \\ $$$$\:{x}^{\mathrm{2}} −{px}+\frac{\mathrm{1}}{\mathrm{2}}\left({p}^{\mathrm{2}} +{a}+\frac{{b}}{{p}}\right)=\mathrm{0} \\ $$$$\underset{−} {{For}\:\:{p}^{\mathrm{2}} =−\mathrm{25}}\:{first}\:{let}\:\:{p}=\mathrm{5}{i} \\ $$$$\:{x}^{\mathrm{2}} −\mathrm{5}{ix}+\frac{\mathrm{1}}{\mathrm{2}}\left(−\mathrm{25}+\mathrm{5}−\mathrm{4}{i}\right)=\mathrm{0} \\ $$$$\:{x}^{\mathrm{2}} −\mathrm{5}{ix}−\mathrm{10}−\mathrm{2}{i}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{5}{i}\pm\sqrt{−\mathrm{25}+\mathrm{40}+\mathrm{8}{i}}}{\mathrm{2}} \\ $$$$\:\:=\frac{\mathrm{5}{i}\pm\sqrt{\mathrm{15}+\mathrm{8}{i}}}{\mathrm{2}} \\ $$$${let}\:\:\left({r}+{mi}\right)^{\mathrm{2}} =\mathrm{15}+\mathrm{8}{i} \\ $$$$\Rightarrow\:\:{r}^{\mathrm{2}} −{m}^{\mathrm{2}} +\left(\mathrm{2}{mr}\right){i}=\mathrm{15}+\mathrm{8}{i} \\ $$$$\Rightarrow\:\:{r}^{\mathrm{2}} −{m}^{\mathrm{2}} =\mathrm{15}\:\:,\:\:{mr}=\mathrm{4} \\ $$$$\Rightarrow\:{r}^{\mathrm{2}} −\frac{\mathrm{16}}{{r}^{\mathrm{2}} }=\mathrm{15} \\ $$$$\Rightarrow\:\:{r}^{\mathrm{4}} −\mathrm{15}{r}^{\mathrm{2}} −\mathrm{16}=\mathrm{0} \\ $$$$\Rightarrow\:\:{r}^{\mathrm{2}} =\mathrm{16},\:−\mathrm{1}\:\:\:\left({but}\:{r}^{\mathrm{2}} \geqslant\mathrm{0}\:\Rightarrow\:{r}^{\mathrm{2}} \neq−\mathrm{1}\right) \\ $$$$\Rightarrow\:\:{m}=\pm\mathrm{1} \\ $$$$\Rightarrow\:\:{r}+{mi}=\:\pm\left(\mathrm{4}+{i}\right) \\ $$$${so}\:\:\:{x}=\frac{\mathrm{5}{i}\pm\left(\mathrm{4}+{i}\right)}{\mathrm{2}}\: \\ $$$$\Rightarrow\:{x}_{\mathrm{1}} =\mathrm{2}+\mathrm{3}{i}\:\:,\:{x}_{\mathrm{2}} =−\mathrm{2}+\mathrm{2}{i} \\ $$$${and}\:{for}\:{p}=−\mathrm{5}{i} \\ $$$$\:{x}^{\mathrm{2}} +\mathrm{5}{ix}+\frac{\mathrm{1}}{\mathrm{2}}\left(−\mathrm{25}+\mathrm{5}+\mathrm{4}{i}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{ix}−\mathrm{10}+\mathrm{2}{i}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{5}{i}\pm\sqrt{−\mathrm{25}+\mathrm{40}−\mathrm{8}{i}}}{\mathrm{2}} \\ $$$$\:\:\:=\:\frac{−\mathrm{5}{i}\pm\sqrt{\mathrm{15}−\mathrm{8}{i}}}{\mathrm{2}} \\ $$$${let}\:\:\left({r}+{mi}\right)^{\mathrm{2}} =\mathrm{15}−\mathrm{8}{i} \\ $$$$\Rightarrow\:{r}^{\mathrm{2}} −{m}^{\mathrm{2}} =\mathrm{15}\:,\:\:{mr}=−\mathrm{4} \\ $$$$\Rightarrow\:\:{r}^{\mathrm{2}} −\frac{\mathrm{16}}{{r}^{\mathrm{2}} }=\mathrm{15} \\ $$$$\Rightarrow\:{r}^{\mathrm{2}} =\mathrm{16}\:,\:{m}=\pm\mathrm{1} \\ $$$$\Rightarrow\:\:{r}+{mi}=\pm\left(\mathrm{4}−{i}\right) \\ $$$${x}=\frac{−\mathrm{5}{i}\pm\left(\mathrm{4}−{i}\right)}{\mathrm{2}} \\ $$$${x}_{\mathrm{3}} =\mathrm{2}−\mathrm{3}{i}\:\:,\:\:{x}_{\mathrm{4}} =−\mathrm{2}−\mathrm{2}{i} \\ $$$${similarly}\:{for}\:{p}=\pm\mathrm{1} \\ $$$$\underset{−} {{Now}\:{for}\:{p}=\pm\mathrm{4}} \\ $$$${x}^{\mathrm{2}} \mp\mathrm{4}{x}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{21}\pm\mathrm{5}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{13}=\mathrm{0}\:\&\:{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{8}=\mathrm{0} \\ $$$$\Rightarrow\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} =\mathrm{2}\pm\mathrm{3}{i}\:\:\&\:\:{x}_{\mathrm{3}} ,{x}_{\mathrm{4}} =−\mathrm{2}\pm\mathrm{2}{i} \\ $$$$\left({fine}\:{formula}\:{i}\:{developed};\right. \\ $$$$\:\:{handles}\:{all}\:{biquadratics}\:{with} \\ $$$$\:\:{real}\:{coefficients}\:{real}\:{well}, \\ $$$$\left.\:\:{i}\:{dont}\:{just}\:{imagine}!\right) \\ $$

Commented by ajfour last updated on 05/Aug/19

Its Time to try quintic again.

$$\mathcal{I}{ts}\:{Time}\:{to}\:{try}\:{quintic}\:{again}. \\ $$

Commented by mr W last updated on 05/Aug/19

that′s great!

$${that}'{s}\:{great}! \\ $$

Commented by TawaTawa last updated on 05/Aug/19

This is great sir. God bless you sir.

$$\mathrm{This}\:\mathrm{is}\:\mathrm{great}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 05/Aug/19

Sir,  what if we have:      mx^4  + ax^3  + bx^2  + cx + d  =  0    we must divide through by  m ?   to make coefficient of  x^4    to be   1  ?

$$\mathrm{Sir},\:\:\mathrm{what}\:\mathrm{if}\:\mathrm{we}\:\mathrm{have}:\:\:\:\:\:\:\mathrm{mx}^{\mathrm{4}} \:+\:\mathrm{ax}^{\mathrm{3}} \:+\:\mathrm{bx}^{\mathrm{2}} \:+\:\mathrm{cx}\:+\:\mathrm{d}\:\:=\:\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{we}\:\mathrm{must}\:\mathrm{divide}\:\mathrm{through}\:\mathrm{by}\:\:\mathrm{m}\:?\:\:\:\mathrm{to}\:\mathrm{make}\:\mathrm{coefficient}\:\mathrm{of}\:\:\mathrm{x}^{\mathrm{4}} \:\:\:\mathrm{to}\:\mathrm{be}\:\:\:\mathrm{1}\:\:? \\ $$

Commented by behi83417@gmail.com last updated on 05/Aug/19

nice method sir Ajfour.I love it.  thanks for sharing this knowldege.

$$\mathrm{nice}\:\mathrm{method}\:\mathrm{sir}\:\mathrm{Ajfour}.\mathrm{I}\:\mathrm{love}\:\mathrm{it}. \\ $$$$\mathrm{thanks}\:\mathrm{for}\:\mathrm{sharing}\:\mathrm{this}\:\mathrm{knowldege}. \\ $$

Commented by ajfour last updated on 05/Aug/19

yes we should divide it by m, then.  thanks behi  sir.

$${yes}\:{we}\:{should}\:{divide}\:{it}\:{by}\:{m},\:{then}. \\ $$$${thanks}\:{behi}\:\:{sir}. \\ $$

Commented by TawaTawa last updated on 05/Aug/19

Oh, great sir.  Thanks so much. More knowledge and more  discovery

$$\mathrm{Oh},\:\mathrm{great}\:\mathrm{sir}.\:\:\mathrm{Thanks}\:\mathrm{so}\:\mathrm{much}.\:\mathrm{More}\:\mathrm{knowledge}\:\mathrm{and}\:\mathrm{more} \\ $$$$\mathrm{discovery} \\ $$

Commented by TawaTawa last updated on 05/Aug/19

Have not underdtand one thing sir.  How is   p^2   =  − 25, − 1, 16

$$\mathrm{Have}\:\mathrm{not}\:\mathrm{underdtand}\:\mathrm{one}\:\mathrm{thing}\:\mathrm{sir}. \\ $$$$\mathrm{How}\:\mathrm{is}\:\:\:\mathrm{p}^{\mathrm{2}} \:\:=\:\:−\:\mathrm{25},\:−\:\mathrm{1},\:\mathrm{16} \\ $$

Commented by ajfour last updated on 05/Aug/19

solving it as a cubic eq. in p^2 .

$${solving}\:{it}\:{as}\:{a}\:{cubic}\:{eq}.\:{in}\:{p}^{\mathrm{2}} . \\ $$

Commented by TawaTawa last updated on 05/Aug/19

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by ajfour last updated on 05/Aug/19

p^6 +10p^4 −391p^2 −400=0  let p^2 =u  u^3 +Au^2 +Bu+C=0  let u=z−(A/3)  z^3 −Au^2 +((A^2 z)/3)−(A^3 /(27))+  Au^2 −((2A^2 z)/3)+(A^3 /9)+Bz−((AB)/3)+C=0  ⇒   z^3 +(B−(A^2 /3))z+(((2A^3 )/(27))−((AB)/3)+C)=0  call it  z^3 +Pz+Q=0   If    (Q^2 /4)+(P^( 3) /(27)) < 0  there are three solutions to z,  called trigonometric solution  to a standard cubic; i never  could remember the result;  so i had just used calculator  to get p^2  from the eq. in p^2 .

$${p}^{\mathrm{6}} +\mathrm{10}{p}^{\mathrm{4}} −\mathrm{391}{p}^{\mathrm{2}} −\mathrm{400}=\mathrm{0} \\ $$$${let}\:{p}^{\mathrm{2}} ={u} \\ $$$${u}^{\mathrm{3}} +{Au}^{\mathrm{2}} +{Bu}+{C}=\mathrm{0} \\ $$$${let}\:{u}={z}−\frac{{A}}{\mathrm{3}} \\ $$$${z}^{\mathrm{3}} −{Au}^{\mathrm{2}} +\frac{{A}^{\mathrm{2}} {z}}{\mathrm{3}}−\frac{{A}^{\mathrm{3}} }{\mathrm{27}}+ \\ $$$${Au}^{\mathrm{2}} −\frac{\mathrm{2}{A}^{\mathrm{2}} {z}}{\mathrm{3}}+\frac{{A}^{\mathrm{3}} }{\mathrm{9}}+{Bz}−\frac{{AB}}{\mathrm{3}}+{C}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\:{z}^{\mathrm{3}} +\left({B}−\frac{{A}^{\mathrm{2}} }{\mathrm{3}}\right){z}+\left(\frac{\mathrm{2}{A}^{\mathrm{3}} }{\mathrm{27}}−\frac{{AB}}{\mathrm{3}}+{C}\right)=\mathrm{0} \\ $$$${call}\:{it}\:\:\boldsymbol{{z}}^{\mathrm{3}} +{P}\boldsymbol{{z}}+{Q}=\mathrm{0} \\ $$$$\:{If}\:\:\:\:\frac{{Q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{P}^{\:\mathrm{3}} }{\mathrm{27}}\:<\:\mathrm{0} \\ $$$${there}\:{are}\:{three}\:{solutions}\:{to}\:{z}, \\ $$$${called}\:{trigonometric}\:{solution} \\ $$$${to}\:{a}\:{standard}\:{cubic};\:{i}\:{never} \\ $$$${could}\:{remember}\:{the}\:{result}; \\ $$$${so}\:{i}\:{had}\:{just}\:{used}\:{calculator} \\ $$$${to}\:{get}\:{p}^{\mathrm{2}} \:{from}\:{the}\:{eq}.\:{in}\:{p}^{\mathrm{2}} . \\ $$

Commented by TawaTawa last updated on 05/Aug/19

Wow, God bless you sir.  But i will use factorization sir

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{But}\:\mathrm{i}\:\mathrm{will}\:\mathrm{use}\:\mathrm{factorization}\:\mathrm{sir} \\ $$

Commented by TawaTawa last updated on 05/Aug/19

since i can know one factor by trial and error

$$\mathrm{since}\:\mathrm{i}\:\mathrm{can}\:\mathrm{know}\:\mathrm{one}\:\mathrm{factor}\:\mathrm{by}\:\mathrm{trial}\:\mathrm{and}\:\mathrm{error} \\ $$

Commented by TawaTawa last updated on 05/Aug/19

or i can use sir  MrW  formular posted on cubic equation

$$\mathrm{or}\:\mathrm{i}\:\mathrm{can}\:\mathrm{use}\:\mathrm{sir}\:\:\mathrm{MrW}\:\:\mathrm{formular}\:\mathrm{posted}\:\mathrm{on}\:\mathrm{cubic}\:\mathrm{equation} \\ $$

Commented by TawaTawa last updated on 05/Aug/19

Sir, in the equation,  no term in    x^3 .   it means the method cannot  work for     ax^4  + bx^3  + cx^2  + dx + e  =  0     except    ax^4  + bx^2  + cx + d = 0  just want to know sir.

$$\mathrm{Sir},\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation},\:\:\mathrm{no}\:\mathrm{term}\:\mathrm{in}\:\:\:\:\mathrm{x}^{\mathrm{3}} .\:\:\:\mathrm{it}\:\mathrm{means}\:\mathrm{the}\:\mathrm{method}\:\mathrm{cannot} \\ $$$$\mathrm{work}\:\mathrm{for}\:\:\:\:\:\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{bx}^{\mathrm{3}} \:+\:\mathrm{cx}^{\mathrm{2}} \:+\:\mathrm{dx}\:+\:\mathrm{e}\:\:=\:\:\mathrm{0}\:\:\:\:\:\mathrm{except}\:\:\:\:\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{bx}^{\mathrm{2}} \:+\:\mathrm{cx}\:+\:\mathrm{d}\:=\:\mathrm{0} \\ $$$$\mathrm{just}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 05/Aug/19

eqn. with x^3  term can be transformed  to an eqn. without x^3  term using a simple  substitution x=t−(a/4) where a is the  coefficient of x^3  term. see Q65830.

$${eqn}.\:{with}\:{x}^{\mathrm{3}} \:{term}\:{can}\:{be}\:{transformed} \\ $$$${to}\:{an}\:{eqn}.\:{without}\:{x}^{\mathrm{3}} \:{term}\:{using}\:{a}\:{simple} \\ $$$${substitution}\:{x}={t}−\frac{{a}}{\mathrm{4}}\:{where}\:{a}\:{is}\:{the} \\ $$$${coefficient}\:{of}\:{x}^{\mathrm{3}} \:{term}.\:{see}\:{Q}\mathrm{65830}. \\ $$

Commented by TawaTawa last updated on 05/Aug/19

Just checked now sir.  God bless you sir.  i now understand all

$$\mathrm{Just}\:\mathrm{checked}\:\mathrm{now}\:\mathrm{sir}.\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{i}\:\mathrm{now}\:\mathrm{understand}\:\mathrm{all} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com