Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 6588 by Temp last updated on 04/Jul/16

Expansion of Q6582  ∫_0 ^( ∞) e^(−ix^2 ) dx=???

$$\mathrm{Expansion}\:\mathrm{of}\:\mathrm{Q6582} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} {e}^{−{ix}^{\mathrm{2}} } {dx}=??? \\ $$

Commented by FilupSmith last updated on 07/Jul/16

I=∫_0 ^( ∞) e^(−ix^2 ) dx  I^2 =∫_0 ^( ∞) e^(−ix^2 ) dx∫_0 ^( ∞) e^(−iy^2 ) dy  I^2 =∫_0 ^( ∞) ∫_0 ^( ∞) e^(−ix^2 −iy^2 ) dxdy  I^2 =∫_0 ^( ∞) ∫_0 ^( ∞) e^(−i(x^2 +y^2 )) dxdy  x=rcosθ  y=rsinθ  0≤r≤∞  0≤θ≤π/2  I^2 =∫_0 ^( π/2) ∫_0 ^( ∞) re^(−ir^2 ) drdθ   ← unsure if correct jacobian  I^2 =∫_0 ^( ∞) re^(−ir^2 ) dr∫_0 ^( π/2) dθ  u=r^2   du=2rdr  I^2 =(1/2)∫_0 ^( ∞) e^(−iu) du∫_0 ^( π/2) dθ  I^2 =(1/2)(−(1/i))[e^(−ir^2 ) ]_0 ^∞ [θ]_0 ^(π/2)   I^2 =(1/4)πi[(1/e^(i∞) )−(1/e^(i0) )]  I^2 =(1/4)πi[(1/e^(i∞) )−1]  ???????

$${I}=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{ix}^{\mathrm{2}} } {dx} \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\infty} {e}^{−{ix}^{\mathrm{2}} } {dx}\int_{\mathrm{0}} ^{\:\infty} {e}^{−{iy}^{\mathrm{2}} } {dy} \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} {e}^{−{ix}^{\mathrm{2}} −{iy}^{\mathrm{2}} } {dxdy} \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} {e}^{−{i}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy} \\ $$$${x}={r}\mathrm{cos}\theta \\ $$$${y}={r}\mathrm{sin}\theta \\ $$$$\mathrm{0}\leqslant{r}\leqslant\infty \\ $$$$\mathrm{0}\leqslant\theta\leqslant\pi/\mathrm{2} \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \int_{\mathrm{0}} ^{\:\infty} {re}^{−{ir}^{\mathrm{2}} } {drd}\theta\:\:\:\leftarrow\:\mathrm{unsure}\:\mathrm{if}\:\mathrm{correct}\:\mathrm{jacobian} \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\infty} {re}^{−{ir}^{\mathrm{2}} } {dr}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {d}\theta \\ $$$${u}={r}^{\mathrm{2}} \\ $$$${du}=\mathrm{2}{rdr} \\ $$$${I}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} {e}^{−{iu}} {du}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {d}\theta \\ $$$${I}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{\mathrm{1}}{{i}}\right)\left[{e}^{−{ir}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\infty} \left[\theta\right]_{\mathrm{0}} ^{\pi/\mathrm{2}} \\ $$$${I}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\pi{i}\left[\frac{\mathrm{1}}{{e}^{{i}\infty} }−\frac{\mathrm{1}}{{e}^{{i}\mathrm{0}} }\right] \\ $$$${I}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\pi{i}\left[\frac{\mathrm{1}}{{e}^{{i}\infty} }−\mathrm{1}\right] \\ $$$$??????? \\ $$

Commented by prakash jain last updated on 07/Jul/16

limit for θ should be 0 to π/2.  First quadrant only.

$$\mathrm{limit}\:\mathrm{for}\:\theta\:\mathrm{should}\:\mathrm{be}\:\mathrm{0}\:\mathrm{to}\:\pi/\mathrm{2}. \\ $$$$\mathrm{First}\:\mathrm{quadrant}\:\mathrm{only}. \\ $$

Commented by FilupSmith last updated on 07/Jul/16

Thank you for the correction! I don′t  know much about changing into polar  coordinates

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{the}\:\mathrm{correction}!\:\mathrm{I}\:\mathrm{don}'\mathrm{t} \\ $$$$\mathrm{know}\:\mathrm{much}\:\mathrm{about}\:\mathrm{changing}\:\mathrm{into}\:\mathrm{polar} \\ $$$$\mathrm{coordinates} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com