Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 6593 by Tawakalitu. last updated on 04/Jul/16

Commented by Yozzii last updated on 05/Jul/16

Given that p is prime and p≤100,  show that there are solutions (x,y),   x,y∈Z, for which y^(37) ≡x^3 +37 (mod p).  −−−−−−−−−−−−−−−−−−−−−−−  An attempt... (probably misunderstood problem)  ⇒∃r∈Z^≥  for p∈[2,100] with y^(37) −rp=x^3 +37  and y,x∈Z.  ∴ r=((y^(37) −x^3 −37)/p). r≥0 ∴ y^(37) ≥x^3 +37  y^(37) ≥x^3 +27+10  y^(37) ≥(x+3)(x^2 −3x+9)+10 and there  are integers x,y satisfying this inequality.  r=((y^(37) −(x+3)(x^2 −3x+9)−10)/p)  Suppose p=2.   ∴ r=((y^(37) −(x^3 +1))/2)−18.  If x is even then x^3 +1 is odd.  So, for r∈Z^≥ , y^(37)  must be odd so that  y^(37) −x^3 −1 is even or ∃k∈Z where   y^(37) −x^3 −1=2k⇒r=k−15∈Z.  If x is odd then y is even. In both cases  even or odd integers x or y can be found accordingly.  −     −     −    −    −    −    −    −    −    −   All other primes are odd after p=2.  r=((y^(37) −(x^3 +1))/p)−18  continue...

$${Given}\:{that}\:{p}\:{is}\:{prime}\:{and}\:{p}\leqslant\mathrm{100}, \\ $$$${show}\:{that}\:{there}\:{are}\:{solutions}\:\left({x},{y}\right),\: \\ $$$${x},{y}\in\mathbb{Z},\:{for}\:{which}\:{y}^{\mathrm{37}} \equiv{x}^{\mathrm{3}} +\mathrm{37}\:\left({mod}\:{p}\right). \\ $$$$−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${An}\:{attempt}...\:\left({probably}\:{misunderstood}\:{problem}\right) \\ $$$$\Rightarrow\exists{r}\in\mathbb{Z}^{\geqslant} \:{for}\:{p}\in\left[\mathrm{2},\mathrm{100}\right]\:{with}\:{y}^{\mathrm{37}} −{rp}={x}^{\mathrm{3}} +\mathrm{37} \\ $$$${and}\:{y},{x}\in\mathbb{Z}. \\ $$$$\therefore\:{r}=\frac{{y}^{\mathrm{37}} −{x}^{\mathrm{3}} −\mathrm{37}}{{p}}.\:{r}\geqslant\mathrm{0}\:\therefore\:{y}^{\mathrm{37}} \geqslant{x}^{\mathrm{3}} +\mathrm{37} \\ $$$${y}^{\mathrm{37}} \geqslant{x}^{\mathrm{3}} +\mathrm{27}+\mathrm{10} \\ $$$${y}^{\mathrm{37}} \geqslant\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{9}\right)+\mathrm{10}\:{and}\:{there} \\ $$$${are}\:{integers}\:{x},{y}\:{satisfying}\:{this}\:{inequality}. \\ $$$${r}=\frac{{y}^{\mathrm{37}} −\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{9}\right)−\mathrm{10}}{{p}} \\ $$$${Suppose}\:{p}=\mathrm{2}.\: \\ $$$$\therefore\:{r}=\frac{{y}^{\mathrm{37}} −\left({x}^{\mathrm{3}} +\mathrm{1}\right)}{\mathrm{2}}−\mathrm{18}. \\ $$$${If}\:{x}\:{is}\:{even}\:{then}\:{x}^{\mathrm{3}} +\mathrm{1}\:{is}\:{odd}. \\ $$$${So},\:{for}\:{r}\in\mathbb{Z}^{\geqslant} ,\:{y}^{\mathrm{37}} \:{must}\:{be}\:{odd}\:{so}\:{that} \\ $$$${y}^{\mathrm{37}} −{x}^{\mathrm{3}} −\mathrm{1}\:{is}\:{even}\:{or}\:\exists{k}\in\mathbb{Z}\:{where}\: \\ $$$${y}^{\mathrm{37}} −{x}^{\mathrm{3}} −\mathrm{1}=\mathrm{2}{k}\Rightarrow{r}={k}−\mathrm{15}\in\mathbb{Z}. \\ $$$${If}\:{x}\:{is}\:{odd}\:{then}\:{y}\:{is}\:{even}.\:{In}\:{both}\:{cases} \\ $$$${even}\:{or}\:{odd}\:{integers}\:{x}\:{or}\:{y}\:{can}\:{be}\:{found}\:{accordingly}. \\ $$$$−\:\:\:\:\:−\:\:\:\:\:−\:\:\:\:−\:\:\:\:−\:\:\:\:−\:\:\:\:−\:\:\:\:−\:\:\:\:−\:\:\:\:−\: \\ $$$${All}\:{other}\:{primes}\:{are}\:{odd}\:{after}\:{p}=\mathrm{2}. \\ $$$${r}=\frac{{y}^{\mathrm{37}} −\left({x}^{\mathrm{3}} +\mathrm{1}\right)}{{p}}−\mathrm{18} \\ $$$${continue}... \\ $$

Commented by prakash jain last updated on 05/Jul/16

y^(37) ≡x^3 +37 (mod p)  Since the question is a for limited set of  number i am just listing a solution.  case p≤37     p=2     37≡1 mod 2 ⇒x=0 y=1     p=3     37≡1 mod 3⇒x=0 y=1     p=5     37≡2 mod 5⇒x=−1 y=1     p=7     37≡2 mod 7⇒x=−1 y=1     p=11   37≡−7 mod 11⇒x=2 y=1     p=13    37≡−2 mod 13⇒x=1 y=1     p=17    37≡3 mod 17⇒Solve y^5 =x^3 +3(mod 17)     p=19    37≡−1 mod 19⇒x=1,y=0     p=23   37≡−9 mod 23⇒x=2,y=−1     p=29   37≡8 mod 29⇒x=−2,y=0     p=31  37≡6 mod 31⇒Solve y^7 =x^3 +6(mod 31)     p≡37  37≡0 mod 37⇒x=0,y=0

$${y}^{\mathrm{37}} \equiv{x}^{\mathrm{3}} +\mathrm{37}\:\left(\mathrm{mod}\:{p}\right) \\ $$$$\mathrm{Since}\:\mathrm{the}\:\mathrm{question}\:\mathrm{is}\:\mathrm{a}\:\mathrm{for}\:\mathrm{limited}\:\mathrm{set}\:\mathrm{of} \\ $$$$\mathrm{number}\:\mathrm{i}\:\mathrm{am}\:\mathrm{just}\:\mathrm{listing}\:\mathrm{a}\:\mathrm{solution}. \\ $$$$\mathrm{case}\:{p}\leqslant\mathrm{37} \\ $$$$\:\:\:{p}=\mathrm{2}\:\:\:\:\:\mathrm{37}\equiv\mathrm{1}\:\mathrm{mod}\:\mathrm{2}\:\Rightarrow{x}=\mathrm{0}\:{y}=\mathrm{1} \\ $$$$\:\:\:{p}=\mathrm{3}\:\:\:\:\:\mathrm{37}\equiv\mathrm{1}\:\mathrm{mod}\:\mathrm{3}\Rightarrow{x}=\mathrm{0}\:{y}=\mathrm{1} \\ $$$$\:\:\:{p}=\mathrm{5}\:\:\:\:\:\mathrm{37}\equiv\mathrm{2}\:\mathrm{mod}\:\mathrm{5}\Rightarrow{x}=−\mathrm{1}\:{y}=\mathrm{1} \\ $$$$\:\:\:{p}=\mathrm{7}\:\:\:\:\:\mathrm{37}\equiv\mathrm{2}\:\mathrm{mod}\:\mathrm{7}\Rightarrow{x}=−\mathrm{1}\:{y}=\mathrm{1} \\ $$$$\:\:\:{p}=\mathrm{11}\:\:\:\mathrm{37}\equiv−\mathrm{7}\:\mathrm{mod}\:\mathrm{11}\Rightarrow{x}=\mathrm{2}\:{y}=\mathrm{1} \\ $$$$\:\:\:{p}=\mathrm{13}\:\:\:\:\mathrm{37}\equiv−\mathrm{2}\:\mathrm{mod}\:\mathrm{13}\Rightarrow{x}=\mathrm{1}\:{y}=\mathrm{1} \\ $$$$\:\:\:{p}=\mathrm{17}\:\:\:\:\mathrm{37}\equiv\mathrm{3}\:\mathrm{mod}\:\mathrm{17}\Rightarrow\mathrm{Solve}\:{y}^{\mathrm{5}} ={x}^{\mathrm{3}} +\mathrm{3}\left({mod}\:\mathrm{17}\right) \\ $$$$\:\:\:{p}=\mathrm{19}\:\:\:\:\mathrm{37}\equiv−\mathrm{1}\:\mathrm{mod}\:\mathrm{19}\Rightarrow{x}=\mathrm{1},{y}=\mathrm{0} \\ $$$$\:\:\:{p}=\mathrm{23}\:\:\:\mathrm{37}\equiv−\mathrm{9}\:\mathrm{mod}\:\mathrm{23}\Rightarrow{x}=\mathrm{2},{y}=−\mathrm{1} \\ $$$$\:\:\:{p}=\mathrm{29}\:\:\:\mathrm{37}\equiv\mathrm{8}\:\mathrm{mod}\:\mathrm{29}\Rightarrow{x}=−\mathrm{2},{y}=\mathrm{0} \\ $$$$\:\:\:{p}=\mathrm{31}\:\:\mathrm{37}\equiv\mathrm{6}\:\mathrm{mod}\:\mathrm{31}\Rightarrow\mathrm{Solve}\:{y}^{\mathrm{7}} ={x}^{\mathrm{3}} +\mathrm{6}\left({mod}\:\mathrm{31}\right) \\ $$$$\:\:\:{p}\equiv\mathrm{37}\:\:\mathrm{37}\equiv\mathrm{0}\:\mathrm{mod}\:\mathrm{37}\Rightarrow{x}=\mathrm{0},{y}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com