Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 65980 by Tony Lin last updated on 07/Aug/19

Commented by Tanmay chaudhury last updated on 07/Aug/19

Answered by Tanmay chaudhury last updated on 07/Aug/19

eqn of circle centre A is x^2 +y^2 =10^2   eqn of circle centre mid point of AD x^2 +(y−5)^2 =5^2   eqn of circle centre mid point of CD (x−5)^2 +(y−5)^2 =5^2   point P...  (x−5)^2 +(y−5)^2 =5^2   x^2 +(y−5)^2 =5^2   substruct  −10x+25=0  x_P =(5/2)  (y−5)^2 =25−((25)/4)=((75)/4)  y=5±((5(√3))/2)→y=((5(1+(√3) ))/2)  negetive value of y not feasible  P((5/2),((5(1+(√3) ))/2))  for point Q  solve  x^2 +y^2 =10^2    (x−5)^2 +(y−5)^2 =5^2   100−10x−10y+50=25  x+y=((125)/(10))=((25)/2)  x^2 +((625)/4)−25x+x^2 =100  8x^2 −100x+625−400=0  8x^2 −100x+225=0  x_Q =((100±(√(10000−32×225)))/(16))  x_Q =((100±20(√7))/(16))→x_Q =((25+5(√7))/4) [−ve ignored]  y=((25)/2)−((25+5(√7))/4)=((25−5(√7))/4)  so reqiuired area  ∫_0 ^x_Q  (√(100−x^2 )) dx−((π((5/2))^2 )/4)−∫_x_P  ^x_Q  5+(√(25−(x−5)^2 ))  dx  it is reflection of thought...

eqnofcirclecentreAisx2+y2=102eqnofcirclecentremidpointofADx2+(y5)2=52eqnofcirclecentremidpointofCD(x5)2+(y5)2=52pointP...(x5)2+(y5)2=52x2+(y5)2=52substruct10x+25=0xP=52(y5)2=25254=754y=5±532y=5(1+3)2negetivevalueofynotfeasibleP(52,5(1+3)2)forpointQsolvex2+y2=102(x5)2+(y5)2=5210010x10y+50=25x+y=12510=252x2+625425x+x2=1008x2100x+625400=08x2100x+225=0xQ=100±1000032×22516xQ=100±20716xQ=25+574[veignored]y=25225+574=25574soreqiuiredarea0xQ100x2dxπ(52)24xPxQ5+25(x5)2dxitisreflectionofthought...

Commented by Kunal12588 last updated on 07/Aug/19

i think you got a little wrong their  eqn of circle centre mid point of CD (x−5)^2 +(y−5)^2 =5^2   should be eqn of circle centre mid point of CD (x−5)^2 +(y−10)^2 =5^2   by solving P(5,5) and Q(8,6)  ∫_0 ^x_Q  (√(100−x^2 )) dx−((π((5/2))^2 )/4)−∫_x_P  ^x_Q  5+(√(25−(x−5)^2 ))  dx  also i don′t get subtracting blue term  should be ∫_0 ^x_Q  (√(100−x^2 )) dx−∫_0 ^x_P  5+(√(25−x^2 ))dx−∫_x_P  ^x_Q  10+(√(25−(x−5)^2 ))  dx

ithinkyougotalittlewrongtheireqnofcirclecentremidpointofCD(x5)2+(y5)2=52shouldbeeqnofcirclecentremidpointofCD(x5)2+(y10)2=52bysolvingP(5,5)andQ(8,6)0xQ100x2dxπ(52)24xPxQ5+25(x5)2dxalsoidontgetsubtractingbluetermshouldbe0xQ100x2dx0xP5+25x2dxxPxQ10+25(x5)2dx

Commented by Tony Lin last updated on 08/Aug/19

thanks sir

thankssir

Answered by MJS last updated on 07/Aug/19

A= (((−5)),((−5)) )  B= ((5),((−5)) )  C= ((5),(5) )  D= (((−5)),(5) )  P= ((0),(0) )  Q= ((3),(1) )  red area  ∫_(−5) ^3 (−5+(√(100−(x+5)^2 )))dx−∫_(−5) ^0 (√(25−(x+5)^2 ))dx−∫_0 ^3 (5−(√(25−x^2 )))dx=  =((25)/4)(8arcsin (4/5) +2arcsin (3/5) −π−4)=  =((25)/2)(π−2−(1/2)arctan ((10296)/(11753)))≈9.77357  ≈9.77357

A=(55)B=(55)C=(55)D=(55)P=(00)Q=(31)redarea35(5+100(x+5)2)dx0525(x+5)2dx30(525x2)dx==254(8arcsin45+2arcsin35π4)==252(π212arctan1029611753)9.773579.77357

Commented by Tony Lin last updated on 08/Aug/19

thanks sir

thankssir

Answered by mr W last updated on 07/Aug/19

Commented by mr W last updated on 07/Aug/19

ϕ+θ=π  10 sin (ϕ/2)=5 sin (θ/2)  2 sin (ϕ/2)=sin ((π/2)−(ϕ/2))=cos (ϕ/2)  ⇒tan (ϕ/2)=(1/2)  sin ϕ=((2×(1/2))/(1+((1/2))^2 ))=(4/5)  ⇒ϕ=2 tan^(−1) (1/2)  ⇒θ=π−2 tan^(−1) (1/2)  A_(green) =2×(5^2 /2)((π/2)−1)=((25π)/2)−25  A_(green) +A_(red) =((10^2 )/2)(ϕ−sin ϕ)+(5^2 /2)(θ−sin θ)  =50(2 tan^(−1) (1/2)−(4/5))+((25)/2)(π−2 tan^(−1) (1/2)−(4/5))  =75 tan^(−1) (1/2)−50+((25π)/2)  ⇒A_(red) =75 tan^(−1) (1/2)−50+((25π)/2)−((25π)/2)+25  ⇒A_(red) =25(3 tan^(−1) (1/2)−1)=9.7736

φ+θ=π10sinφ2=5sinθ22sinφ2=sin(π2φ2)=cosφ2tanφ2=12sinφ=2×121+(12)2=45φ=2tan112θ=π2tan112Agreen=2×522(π21)=25π225Agreen+Ared=1022(φsinφ)+522(θsinθ)=50(2tan11245)+252(π2tan11245)=75tan11250+25π2Ared=75tan11250+25π225π2+25Ared=25(3tan1121)=9.7736

Commented by mr W last updated on 07/Aug/19

Commented by Tony Lin last updated on 08/Aug/19

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com