Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 65980 by Tony Lin last updated on 07/Aug/19

Commented by Tanmay chaudhury last updated on 07/Aug/19

Answered by Tanmay chaudhury last updated on 07/Aug/19

eqn of circle centre A is x^2 +y^2 =10^2   eqn of circle centre mid point of AD x^2 +(y−5)^2 =5^2   eqn of circle centre mid point of CD (x−5)^2 +(y−5)^2 =5^2   point P...  (x−5)^2 +(y−5)^2 =5^2   x^2 +(y−5)^2 =5^2   substruct  −10x+25=0  x_P =(5/2)  (y−5)^2 =25−((25)/4)=((75)/4)  y=5±((5(√3))/2)→y=((5(1+(√3) ))/2)  negetive value of y not feasible  P((5/2),((5(1+(√3) ))/2))  for point Q  solve  x^2 +y^2 =10^2    (x−5)^2 +(y−5)^2 =5^2   100−10x−10y+50=25  x+y=((125)/(10))=((25)/2)  x^2 +((625)/4)−25x+x^2 =100  8x^2 −100x+625−400=0  8x^2 −100x+225=0  x_Q =((100±(√(10000−32×225)))/(16))  x_Q =((100±20(√7))/(16))→x_Q =((25+5(√7))/4) [−ve ignored]  y=((25)/2)−((25+5(√7))/4)=((25−5(√7))/4)  so reqiuired area  ∫_0 ^x_Q  (√(100−x^2 )) dx−((π((5/2))^2 )/4)−∫_x_P  ^x_Q  5+(√(25−(x−5)^2 ))  dx  it is reflection of thought...

$${eqn}\:{of}\:{circle}\:{centre}\:{A}\:{is}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{10}^{\mathrm{2}} \\ $$$${eqn}\:{of}\:{circle}\:{centre}\:{mid}\:{point}\:{of}\:{AD}\:{x}^{\mathrm{2}} +\left({y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$${eqn}\:{of}\:{circle}\:{centre}\:{mid}\:{point}\:{of}\:{CD}\:\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$${point}\:{P}... \\ $$$$\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\left({y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$${substruct} \\ $$$$−\mathrm{10}{x}+\mathrm{25}=\mathrm{0}\:\:{x}_{{P}} =\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\left({y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{25}−\frac{\mathrm{25}}{\mathrm{4}}=\frac{\mathrm{75}}{\mathrm{4}}\:\:{y}=\mathrm{5}\pm\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}}\rightarrow{y}=\frac{\mathrm{5}\left(\mathrm{1}+\sqrt{\mathrm{3}}\:\right)}{\mathrm{2}} \\ $$$${negetive}\:{value}\:{of}\:{y}\:{not}\:{feasible} \\ $$$${P}\left(\frac{\mathrm{5}}{\mathrm{2}},\frac{\mathrm{5}\left(\mathrm{1}+\sqrt{\mathrm{3}}\:\right)}{\mathrm{2}}\right) \\ $$$${for}\:{point}\:{Q}\:\:{solve} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{10}^{\mathrm{2}} \:\:\:\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$$\mathrm{100}−\mathrm{10}{x}−\mathrm{10}{y}+\mathrm{50}=\mathrm{25} \\ $$$${x}+{y}=\frac{\mathrm{125}}{\mathrm{10}}=\frac{\mathrm{25}}{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\frac{\mathrm{625}}{\mathrm{4}}−\mathrm{25}{x}+{x}^{\mathrm{2}} =\mathrm{100} \\ $$$$\mathrm{8}{x}^{\mathrm{2}} −\mathrm{100}{x}+\mathrm{625}−\mathrm{400}=\mathrm{0} \\ $$$$\mathrm{8}{x}^{\mathrm{2}} −\mathrm{100}{x}+\mathrm{225}=\mathrm{0} \\ $$$${x}_{{Q}} =\frac{\mathrm{100}\pm\sqrt{\mathrm{10000}−\mathrm{32}×\mathrm{225}}}{\mathrm{16}} \\ $$$${x}_{{Q}} =\frac{\mathrm{100}\pm\mathrm{20}\sqrt{\mathrm{7}}}{\mathrm{16}}\rightarrow{x}_{{Q}} =\frac{\mathrm{25}+\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{4}}\:\left[−{ve}\:{ignored}\right] \\ $$$${y}=\frac{\mathrm{25}}{\mathrm{2}}−\frac{\mathrm{25}+\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{4}}=\frac{\mathrm{25}−\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$${so}\:{reqiuired}\:{area} \\ $$$$\int_{\mathrm{0}} ^{{x}_{{Q}} } \sqrt{\mathrm{100}−{x}^{\mathrm{2}} }\:{dx}−\frac{\pi\left(\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{4}}−\int_{{x}_{{P}} } ^{{x}_{{Q}} } \mathrm{5}+\sqrt{\mathrm{25}−\left({x}−\mathrm{5}\right)^{\mathrm{2}} }\:\:{dx} \\ $$$${it}\:{is}\:{reflection}\:{of}\:{thought}... \\ $$

Commented by Kunal12588 last updated on 07/Aug/19

i think you got a little wrong their  eqn of circle centre mid point of CD (x−5)^2 +(y−5)^2 =5^2   should be eqn of circle centre mid point of CD (x−5)^2 +(y−10)^2 =5^2   by solving P(5,5) and Q(8,6)  ∫_0 ^x_Q  (√(100−x^2 )) dx−((π((5/2))^2 )/4)−∫_x_P  ^x_Q  5+(√(25−(x−5)^2 ))  dx  also i don′t get subtracting blue term  should be ∫_0 ^x_Q  (√(100−x^2 )) dx−∫_0 ^x_P  5+(√(25−x^2 ))dx−∫_x_P  ^x_Q  10+(√(25−(x−5)^2 ))  dx

$${i}\:{think}\:{you}\:{got}\:{a}\:{little}\:{wrong}\:{their} \\ $$$${eqn}\:{of}\:{circle}\:{centre}\:{mid}\:{point}\:{of}\:{CD}\:\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$${should}\:{be}\:{eqn}\:{of}\:{circle}\:{centre}\:{mid}\:{point}\:{of}\:{CD}\:\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({y}−\mathrm{10}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$${by}\:{solving}\:{P}\left(\mathrm{5},\mathrm{5}\right)\:{and}\:{Q}\left(\mathrm{8},\mathrm{6}\right) \\ $$$$\int_{\mathrm{0}} ^{{x}_{{Q}} } \sqrt{\mathrm{100}−{x}^{\mathrm{2}} }\:{dx}−\frac{\pi\left(\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{4}}−\int_{{x}_{{P}} } ^{{x}_{{Q}} } \mathrm{5}+\sqrt{\mathrm{25}−\left({x}−\mathrm{5}\right)^{\mathrm{2}} }\:\:{dx} \\ $$$${also}\:{i}\:{don}'{t}\:{get}\:{subtracting}\:{blue}\:{term} \\ $$$${should}\:{be}\:\int_{\mathrm{0}} ^{{x}_{{Q}} } \sqrt{\mathrm{100}−{x}^{\mathrm{2}} }\:{dx}−\int_{\mathrm{0}} ^{{x}_{{P}} } \mathrm{5}+\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }{dx}−\int_{{x}_{{P}} } ^{{x}_{{Q}} } \mathrm{10}+\sqrt{\mathrm{25}−\left({x}−\mathrm{5}\right)^{\mathrm{2}} }\:\:{dx} \\ $$

Commented by Tony Lin last updated on 08/Aug/19

thanks sir

$${thanks}\:{sir} \\ $$

Answered by MJS last updated on 07/Aug/19

A= (((−5)),((−5)) )  B= ((5),((−5)) )  C= ((5),(5) )  D= (((−5)),(5) )  P= ((0),(0) )  Q= ((3),(1) )  red area  ∫_(−5) ^3 (−5+(√(100−(x+5)^2 )))dx−∫_(−5) ^0 (√(25−(x+5)^2 ))dx−∫_0 ^3 (5−(√(25−x^2 )))dx=  =((25)/4)(8arcsin (4/5) +2arcsin (3/5) −π−4)=  =((25)/2)(π−2−(1/2)arctan ((10296)/(11753)))≈9.77357  ≈9.77357

$${A}=\begin{pmatrix}{−\mathrm{5}}\\{−\mathrm{5}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{\mathrm{5}}\\{−\mathrm{5}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{\mathrm{5}}\\{\mathrm{5}}\end{pmatrix} \\ $$$${D}=\begin{pmatrix}{−\mathrm{5}}\\{\mathrm{5}}\end{pmatrix}\:\:{P}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{Q}=\begin{pmatrix}{\mathrm{3}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{red}\:\mathrm{area} \\ $$$$\underset{−\mathrm{5}} {\overset{\mathrm{3}} {\int}}\left(−\mathrm{5}+\sqrt{\mathrm{100}−\left({x}+\mathrm{5}\right)^{\mathrm{2}} }\right){dx}−\underset{−\mathrm{5}} {\overset{\mathrm{0}} {\int}}\sqrt{\mathrm{25}−\left({x}+\mathrm{5}\right)^{\mathrm{2}} }{dx}−\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\left(\mathrm{5}−\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }\right){dx}= \\ $$$$=\frac{\mathrm{25}}{\mathrm{4}}\left(\mathrm{8arcsin}\:\frac{\mathrm{4}}{\mathrm{5}}\:+\mathrm{2arcsin}\:\frac{\mathrm{3}}{\mathrm{5}}\:−\pi−\mathrm{4}\right)= \\ $$$$=\frac{\mathrm{25}}{\mathrm{2}}\left(\pi−\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:\frac{\mathrm{10296}}{\mathrm{11753}}\right)\approx\mathrm{9}.\mathrm{77357} \\ $$$$\approx\mathrm{9}.\mathrm{77357} \\ $$

Commented by Tony Lin last updated on 08/Aug/19

thanks sir

$${thanks}\:{sir} \\ $$

Answered by mr W last updated on 07/Aug/19

Commented by mr W last updated on 07/Aug/19

ϕ+θ=π  10 sin (ϕ/2)=5 sin (θ/2)  2 sin (ϕ/2)=sin ((π/2)−(ϕ/2))=cos (ϕ/2)  ⇒tan (ϕ/2)=(1/2)  sin ϕ=((2×(1/2))/(1+((1/2))^2 ))=(4/5)  ⇒ϕ=2 tan^(−1) (1/2)  ⇒θ=π−2 tan^(−1) (1/2)  A_(green) =2×(5^2 /2)((π/2)−1)=((25π)/2)−25  A_(green) +A_(red) =((10^2 )/2)(ϕ−sin ϕ)+(5^2 /2)(θ−sin θ)  =50(2 tan^(−1) (1/2)−(4/5))+((25)/2)(π−2 tan^(−1) (1/2)−(4/5))  =75 tan^(−1) (1/2)−50+((25π)/2)  ⇒A_(red) =75 tan^(−1) (1/2)−50+((25π)/2)−((25π)/2)+25  ⇒A_(red) =25(3 tan^(−1) (1/2)−1)=9.7736

$$\varphi+\theta=\pi \\ $$$$\mathrm{10}\:\mathrm{sin}\:\frac{\varphi}{\mathrm{2}}=\mathrm{5}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}} \\ $$$$\mathrm{2}\:\mathrm{sin}\:\frac{\varphi}{\mathrm{2}}=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\varphi}{\mathrm{2}}\right)=\mathrm{cos}\:\frac{\varphi}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\varphi}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\varphi=\frac{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\Rightarrow\varphi=\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\theta=\pi−\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}} \\ $$$${A}_{{green}} =\mathrm{2}×\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}−\mathrm{1}\right)=\frac{\mathrm{25}\pi}{\mathrm{2}}−\mathrm{25} \\ $$$${A}_{{green}} +{A}_{{red}} =\frac{\mathrm{10}^{\mathrm{2}} }{\mathrm{2}}\left(\varphi−\mathrm{sin}\:\varphi\right)+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{2}}\left(\theta−\mathrm{sin}\:\theta\right) \\ $$$$=\mathrm{50}\left(\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{4}}{\mathrm{5}}\right)+\frac{\mathrm{25}}{\mathrm{2}}\left(\pi−\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{4}}{\mathrm{5}}\right) \\ $$$$=\mathrm{75}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\mathrm{50}+\frac{\mathrm{25}\pi}{\mathrm{2}} \\ $$$$\Rightarrow{A}_{{red}} =\mathrm{75}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\mathrm{50}+\frac{\mathrm{25}\pi}{\mathrm{2}}−\frac{\mathrm{25}\pi}{\mathrm{2}}+\mathrm{25} \\ $$$$\Rightarrow{A}_{{red}} =\mathrm{25}\left(\mathrm{3}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)=\mathrm{9}.\mathrm{7736} \\ $$

Commented by mr W last updated on 07/Aug/19

Commented by Tony Lin last updated on 08/Aug/19

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com