Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66016 by Rio Michael last updated on 07/Aug/19

Evaluate     a. ∫_1 ^2  (lnx)^2 dx  b.  ∫_0 ^(π/6)  sin^2 x cos^3 xdx

Evaluatea.12(lnx)2dxb.0π6sin2xcos3xdx

Commented by Prithwish sen last updated on 07/Aug/19

b.∫_0 ^(π/6) sin^2 x(1−sin^2 x)cosxdx  now put sinx=u⇒cosx dx=du  ∫_0 ^(1/2) u^2 (1−u^2 )du =∫_0 ^(1/2) (u^2 −u^4 )du =[(1/3)u^3 −(1/5)u^5 ]_0 ^(1/2)   =(1/(24)) − (1/(160)) =((17)/(480))  please check.

b.0π6sin2x(1sin2x)cosxdxnowputsinx=ucosxdx=du012u2(1u2)du=012(u2u4)du=[13u315u5]012=1241160=17480pleasecheck.

Commented by Prithwish sen last updated on 07/Aug/19

a.lnx = t⇒(dx/x) =dt⇒dx=e^t dt  ∫_0 ^(ln2) t^2 e^t dt= [t^2 e^t −2te^t +2e^t ]_0 ^(ln2) =2(ln2)^2 −4ln2+2  please check.

a.lnx=tdxx=dtdx=etdt0ln2t2etdt=[t2et2tet+2et]0ln2=2(ln2)24ln2+2pleasecheck.

Commented by kaivan.ahmadi last updated on 07/Aug/19

∫(1−cos^2 x)cos^3 xdx=∫(cos^3 xdx−cos^5 x)dx=  ∫cosx(1−sin^2 x−(1−sin^2 x)^2 )dx=  ∫cosx(1−sin^2 x−1+2sin^2 x−sin^4 x)dx=  ∫cosx(sin^2 x−sin^4 x)dx  set u=sinx⇒du=cosxdx  ∫(u^2 −u^4 )du=(u^3 /3)−(u^5 /5)=((sin^3 x)/3)−((sin^5 x)/5)

(1cos2x)cos3xdx=(cos3xdxcos5x)dx=cosx(1sin2x(1sin2x)2)dx=cosx(1sin2x1+2sin2xsin4x)dx=cosx(sin2xsin4x)dxsetu=sinxdu=cosxdx(u2u4)du=u33u55=sin3x3sin5x5

Commented by mathmax by abdo last updated on 07/Aug/19

a) changement lnx =t give ∫_1 ^2 (lnx)^2 dx  =∫_0 ^(ln(2)) t^2 e^t  dt   by parts   ∫_0 ^(ln(2)) t^2 e^t dt =[t^2 e^t ]_0 ^(ln(2)) −∫_0 ^(ln(2)) 2t e^t dt  =2(ln2)^2  −2 {  [te^t ]_0 ^(ln(2)) −∫_0 ^(ln(2)) e^t dt}  =2(ln(2))^2 −2{2ln(2)−(2−1)}  =2(ln(2))^2 −4ln(2) +2

a)changementlnx=tgive12(lnx)2dx=0ln(2)t2etdtbyparts0ln(2)t2etdt=[t2et]0ln(2)0ln(2)2tetdt=2(ln2)22{[tet]0ln(2)0ln(2)etdt}=2(ln(2))22{2ln(2)(21)}=2(ln(2))24ln(2)+2

Commented by mathmax by abdo last updated on 07/Aug/19

b) let I =∫_0 ^(π/6)  sin^2 x cos^3 x ⇒I =∫_0 ^(π/6)  (sinxcosx)^2 cosxdx  =(1/4)∫_0 ^(π/6)  sin^2 2x cosx dx =(1/4) ∫_0 ^(π/6)  ((1−cos(4x))/2) cosx dx  =(1/8) ∫_0 ^(π/6) (cosx−cos(4x)cosx)dx  =(1/8) ∫_0 ^(π/6)  cosxdx −(1/8) ∫_0 ^(π/6)  cos(4x)cosxdx  =(1/8).(1/2) −(1/(16)) ∫_0 ^(π/6)  (cos(5x)+cos3x)dx  =(1/(16))−(1/(16))[(1/5)sin(5x)+(1/3)sin(3x)]_0 ^(π/6)   =(1/(16))−(1/(16)){(1/(10)) +(1/3)} =(1/(16))−(1/(160))−(1/(48)) =....

b)letI=0π6sin2xcos3xI=0π6(sinxcosx)2cosxdx=140π6sin22xcosxdx=140π61cos(4x)2cosxdx=180π6(cosxcos(4x)cosx)dx=180π6cosxdx180π6cos(4x)cosxdx=18.121160π6(cos(5x)+cos3x)dx=116116[15sin(5x)+13sin(3x)]0π6=116116{110+13}=1161160148=....

Commented by Rio Michael last updated on 07/Aug/19

Thanks sirs

Thankssirs

Answered by Tanmay chaudhury last updated on 07/Aug/19

b.∫_0 ^(π/6) sin^2 x× (1−sin^2 x)d(sinx)  ∣((sin^3 x)/3)−((sin^5 x)/5)∣_0 ^(π/6)   =((((1/2))^3 )/3)−((((1/2))^5 )/5)  (1/8)((1/3)−(1/(20)))  =((17)/(480))

b.0π6sin2x×(1sin2x)d(sinx)sin3x3sin5x50π6=(12)33(12)5518(13120)=17480

Terms of Service

Privacy Policy

Contact: info@tinkutara.com