Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 66055 by ajfour last updated on 08/Aug/19

Commented by ajfour last updated on 08/Aug/19

Eq. of ellipse  (x^2 /a^2 )+(((y−b)^2 )/b^2 )=1  parabola touches the x-axis  and the ellipse and passes  though center of ellipse (0,b).  Find equation of parabola in  terms of a and b.

$${Eq}.\:{of}\:{ellipse}\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}−{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${parabola}\:{touches}\:{the}\:{x}-{axis} \\ $$$${and}\:{the}\:{ellipse}\:{and}\:{passes} \\ $$$${though}\:{center}\:{of}\:{ellipse}\:\left(\mathrm{0},{b}\right). \\ $$$${Find}\:{equation}\:{of}\:{parabola}\:{in} \\ $$$${terms}\:{of}\:{a}\:{and}\:{b}. \\ $$

Answered by mr W last updated on 09/Aug/19

eqn. of parabola:  y=b(1−(x/p))^2   eqn. of ellipse:  ((x/a))^2 +((y/b)−1)^2 =1  touch point P(h,k)  let m=tan θ for tangent at touch point  y′=−((2b)/p)(1−(h/p))=m  ⇒h=p(1+((pm)/(2b)))  (x/a^2 )+(1/b)((y/b)−1)y′=0  (h/a^2 )+(1/b)((k/b)−1)m=0  ⇒k=b[1−((pb)/(ma^2 ))(1+((pm)/(2b)))]  ((h/a))^2 +((k/b)−1)^2 =1  ⇒(p^2 /a^2 )(1+(b^2 /(m^2 a^2 )))(1+((pm)/(2b)))^2 =1   ...(i)    (k/b)=(1−(h/p))^2   ⇒1−((pb)/(ma^2 ))(1+((pm)/(2b)))=(((pm)/(2b)))^2    ...(ii)  let λ=(p/a), μ=(b/a)  from (i):  ⇒λ^2 (1+(μ^2 /m^2 ))(1+((mλ)/(2μ)))^2 =1    ...(I)  from (ii):  ⇒1−((μλ)/m)(1+((mλ)/(2μ)))=(((mλ)/(2μ)))^2   ⇒(2+(m^2 /μ^2 ))λ^2 +((4μ)/m)λ−4 =0   ...(II)  ⇒λ=(((2m)/μ)/(2+(m^2 /μ^2 )))=((2μm)/(2μ^2 +m^2 ))  or m^2 −((2μ)/λ)m+2μ^2 =0  ⇒(m/μ)=(1/λ)(1+(√(1−2λ^2 )))  put this into (I):  ⇒((λ^2 (3+(√(1−2λ^2 )))^2 )/8)(2+(λ^2 /(1−λ^2 +(√(1−2λ^2 )))))=1  ⇒λ=0.5194 (constant, independent from μ!)  ⇒p=λa=0.5194a    eqn. of parabola:  ⇒y=b(1−(x/(0.5194a)))^2

$${eqn}.\:{of}\:{parabola}: \\ $$$${y}={b}\left(\mathrm{1}−\frac{{x}}{{p}}\right)^{\mathrm{2}} \\ $$$${eqn}.\:{of}\:{ellipse}: \\ $$$$\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{b}}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${touch}\:{point}\:{P}\left({h},{k}\right) \\ $$$${let}\:{m}=\mathrm{tan}\:\theta\:{for}\:{tangent}\:{at}\:{touch}\:{point} \\ $$$${y}'=−\frac{\mathrm{2}{b}}{{p}}\left(\mathrm{1}−\frac{{h}}{{p}}\right)={m} \\ $$$$\Rightarrow{h}={p}\left(\mathrm{1}+\frac{{pm}}{\mathrm{2}{b}}\right) \\ $$$$\frac{{x}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}}\left(\frac{{y}}{{b}}−\mathrm{1}\right){y}'=\mathrm{0} \\ $$$$\frac{{h}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}}\left(\frac{{k}}{{b}}−\mathrm{1}\right){m}=\mathrm{0} \\ $$$$\Rightarrow{k}={b}\left[\mathrm{1}−\frac{{pb}}{{ma}^{\mathrm{2}} }\left(\mathrm{1}+\frac{{pm}}{\mathrm{2}{b}}\right)\right] \\ $$$$\left(\frac{{h}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{k}}{{b}}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow\frac{{p}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\left(\mathrm{1}+\frac{{b}^{\mathrm{2}} }{{m}^{\mathrm{2}} {a}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{{pm}}{\mathrm{2}{b}}\right)^{\mathrm{2}} =\mathrm{1}\:\:\:...\left({i}\right) \\ $$$$ \\ $$$$\frac{{k}}{{b}}=\left(\mathrm{1}−\frac{{h}}{{p}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{1}−\frac{{pb}}{{ma}^{\mathrm{2}} }\left(\mathrm{1}+\frac{{pm}}{\mathrm{2}{b}}\right)=\left(\frac{{pm}}{\mathrm{2}{b}}\right)^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$${let}\:\lambda=\frac{{p}}{{a}},\:\mu=\frac{{b}}{{a}} \\ $$$${from}\:\left({i}\right): \\ $$$$\Rightarrow\lambda^{\mathrm{2}} \left(\mathrm{1}+\frac{\mu^{\mathrm{2}} }{{m}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{{m}\lambda}{\mathrm{2}\mu}\right)^{\mathrm{2}} =\mathrm{1}\:\:\:\:...\left({I}\right) \\ $$$${from}\:\left({ii}\right): \\ $$$$\Rightarrow\mathrm{1}−\frac{\mu\lambda}{{m}}\left(\mathrm{1}+\frac{{m}\lambda}{\mathrm{2}\mu}\right)=\left(\frac{{m}\lambda}{\mathrm{2}\mu}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{2}+\frac{{m}^{\mathrm{2}} }{\mu^{\mathrm{2}} }\right)\lambda^{\mathrm{2}} +\frac{\mathrm{4}\mu}{{m}}\lambda−\mathrm{4}\:=\mathrm{0}\:\:\:...\left({II}\right) \\ $$$$\Rightarrow\lambda=\frac{\frac{\mathrm{2}{m}}{\mu}}{\mathrm{2}+\frac{{m}^{\mathrm{2}} }{\mu^{\mathrm{2}} }}=\frac{\mathrm{2}\mu{m}}{\mathrm{2}\mu^{\mathrm{2}} +{m}^{\mathrm{2}} } \\ $$$${or}\:{m}^{\mathrm{2}} −\frac{\mathrm{2}\mu}{\lambda}{m}+\mathrm{2}\mu^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\frac{{m}}{\mu}=\frac{\mathrm{1}}{\lambda}\left(\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda^{\mathrm{2}} }\right) \\ $$$${put}\:{this}\:{into}\:\left({I}\right): \\ $$$$\Rightarrow\frac{\lambda^{\mathrm{2}} \left(\mathrm{3}+\sqrt{\mathrm{1}−\mathrm{2}\lambda^{\mathrm{2}} }\right)^{\mathrm{2}} }{\mathrm{8}}\left(\mathrm{2}+\frac{\lambda^{\mathrm{2}} }{\mathrm{1}−\lambda^{\mathrm{2}} +\sqrt{\mathrm{1}−\mathrm{2}\lambda^{\mathrm{2}} }}\right)=\mathrm{1} \\ $$$$\Rightarrow\lambda=\mathrm{0}.\mathrm{5194}\:\left({constant},\:{independent}\:{from}\:\mu!\right) \\ $$$$\Rightarrow{p}=\lambda{a}=\mathrm{0}.\mathrm{5194}{a} \\ $$$$ \\ $$$${eqn}.\:{of}\:{parabola}: \\ $$$$\Rightarrow{y}={b}\left(\mathrm{1}−\frac{{x}}{\mathrm{0}.\mathrm{5194}{a}}\right)^{\mathrm{2}} \\ $$

Commented by MJS last updated on 09/Aug/19

great!  just for the fun of it, the exact value of λ:  λ=(√(−4+((56+((88)/9)(√(33))))^(1/3) −((−56+((88)/9)(√(33))))^(1/3) ))

$$\mathrm{great}! \\ $$$$\mathrm{just}\:\mathrm{for}\:\mathrm{the}\:\mathrm{fun}\:\mathrm{of}\:\mathrm{it},\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\lambda: \\ $$$$\lambda=\sqrt{−\mathrm{4}+\sqrt[{\mathrm{3}}]{\mathrm{56}+\frac{\mathrm{88}}{\mathrm{9}}\sqrt{\mathrm{33}}}−\sqrt[{\mathrm{3}}]{−\mathrm{56}+\frac{\mathrm{88}}{\mathrm{9}}\sqrt{\mathrm{33}}}} \\ $$

Commented by mr W last updated on 08/Aug/19

Commented by mr W last updated on 08/Aug/19

Commented by mr W last updated on 09/Aug/19

thanks sir! how did you get that?  could you transform the eqn. into a  cubic eqn.?

$${thanks}\:{sir}!\:{how}\:{did}\:{you}\:{get}\:{that}? \\ $$$${could}\:{you}\:{transform}\:{the}\:{eqn}.\:{into}\:{a} \\ $$$${cubic}\:{eqn}.? \\ $$

Commented by MJS last updated on 12/Aug/19

sorry I get no notifications again...  it′s easy to transform to  λ^6 +Aλ^4 +Bλ^2 +C=0  and then follow the usual path

$$\mathrm{sorry}\:\mathrm{I}\:\mathrm{get}\:\mathrm{no}\:\mathrm{notifications}\:\mathrm{again}... \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{transform}\:\mathrm{to} \\ $$$$\lambda^{\mathrm{6}} +\mathcal{A}\lambda^{\mathrm{4}} +\mathcal{B}\lambda^{\mathrm{2}} +\mathcal{C}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{then}\:\mathrm{follow}\:\mathrm{the}\:\mathrm{usual}\:\mathrm{path} \\ $$

Commented by mr W last updated on 14/Aug/19

now i see sir! thanks!  i get no notification either. :(

$${now}\:{i}\:{see}\:{sir}!\:{thanks}! \\ $$$${i}\:{get}\:{no}\:{notification}\:{either}.\::\left(\right. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com