Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66058 by arvinddayama01@gmail.comm last updated on 08/Aug/19

If    x + (1/x)=1    find out value:−        ((x^(20) +x^(17) +x^(14) +x^(11) )/(x^(17) +x^(14) +x^(11) +x^8 ))    =    ?

Ifx+1x=1findoutvalue:x20+x17+x14+x11x17+x14+x11+x8=?

Commented by Prithwish sen last updated on 08/Aug/19

x^2 −x+1=0⇒(x+1)(x^2 −x+1)=0⇒x^3 =−1  ((x^3 (x^(17) +x^(14) +x^(11) +x^8 ))/(x^(17) +x^(14) +x^(11) +x^8 )) = x^3  = −1

x2x+1=0(x+1)(x2x+1)=0x3=1x3(x17+x14+x11+x8)x17+x14+x11+x8=x3=1

Commented by $@ty@m123 last updated on 08/Aug/19

I have a doubt:  If you write  x^2 −x+1=0⇒(x+1)(x^2 −x+1)=0⇒x^3 =−1  then you can also write:  x^2 −x+1=0⇒(x+n)(x^2 −x+1)=0⇒x=−n⇒ n∈R

Ihaveadoubt:Ifyouwritex2x+1=0(x+1)(x2x+1)=0x3=1thenyoucanalsowrite:x2x+1=0(x+n)(x2x+1)=0x=nnR

Commented by Prithwish sen last updated on 08/Aug/19

I have just used the formula of  a^3 +b^3 =(a+b)(a^2 −ab+b^2 ) where I just   put a=x and b = 1.

Ihavejustusedtheformulaofa3+b3=(a+b)(a2ab+b2)whereIjustputa=xandb=1.

Commented by Prithwish sen last updated on 09/Aug/19

I think the equation x^3 +1=0 has 3   roots they are −1,((1±(√3)i)/(2.))  Now x+1=0 has the root x= −1  and x^2 −x+1=0 has two roots ((1±(√3)i)/2)  just like the equation   x^2 −5x+6=0 has 2 roots 2 and 3  of which x−2=0 is satisfied by x=2  and x−3= 0 is satisfied by x= 3.But as a total  the entire equation is satisfied by both 2   roots.

Ithinktheequationx3+1=0has3rootstheyare1,1±3i2.Nowx+1=0hastherootx=1andx2x+1=0hastworoots1±3i2justliketheequationx25x+6=0has2roots2and3ofwhichx2=0issatisfiedbyx=2andx3=0issatisfiedbyx=3.Butasatotaltheentireequationissatisfiedbyboth2roots.

Commented by $@ty@m123 last updated on 09/Aug/19

One more observation:  The given expression≠x^3   when x=−1

Onemoreobservation:Thegivenexpressionx3whenx=1

Answered by $@ty@m123 last updated on 08/Aug/19

x+(1/x)=1  x^2 −x+1=0  x=((1±(√3)i)/2)  The given expression=x^3   =(((1±(√3)i)/2))^3   =(1/8){1±((√3)i)^3 ±3(√3)i+3.(−3)}  =(1/8)(1∓3(√3)i∓3(√3)i−9)  =((−8)/8)  =−1

x+1x=1x2x+1=0x=1±3i2Thegivenexpression=x3=(1±3i2)3=18{1±(3i)3±33i+3.(3)}=18(133i33i9)=88=1

Answered by afjyormathchamp@gmail.com last updated on 08/Aug/19

∴ x^2 −x+1=0  (x+1)(x^2 −x+1)=0     x^3 =−1   ⇒    ((x^3 (x^(17) +x^(14) +x^(11) +x^8 ))/((x^(17) +x^(14) +x^(11) +x^8 )))=x^3 =−1

x2x+1=0(x+1)(x2x+1)=0x3=1x3(x17+x14+x11+x8)(x17+x14+x11+x8)=x3=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com