Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66060 by mathmax by abdo last updated on 08/Aug/19

let f(x) =∫_0 ^(π/4)   (dt/(x+tant))  with x real  1) find aexplicit form of f(x)  2)find also g(x) =∫_0 ^(π/4)   (dt/((x+tant)^2 ))  3)give f^((n)) (x)at form of integral  4)calculate ∫_0 ^(π/4)   (dt/(2+tant))  and ∫_0 ^(π/4)   (dt/((2+tant)^2 ))

letf(x)=0π4dtx+tantwithxreal1)findaexplicitformoff(x)2)findalsog(x)=0π4dt(x+tant)23)givef(n)(x)atformofintegral4)calculate0π4dt2+tantand0π4dt(2+tant)2

Commented by mathmax by abdo last updated on 10/Aug/19

1) we have f(x)=∫_0 ^(π/4)  (dt/(x+tant))  changement tan((t/2))=u give  f(x)=∫_0 ^((√2)−1)     (1/(x+((2u)/(1−u^2 )))) ((2du)/(1+u^2 )) =2∫_0 ^((√2)−1)  ((1−u^2 )/((1+u^2 )(x−xu^2  +2u)))du  =2 ∫_0 ^((√2)−1)   ((u^2 −1)/((u^2  +1)(xu^2 −2u−x)))du let decompose  F(u) =((u^2 −1)/((u^2  +1)(xu^2 −2u−x)))  xu^2 −2u−x=0 →Δ^′  =1+x^2  ⇒u_1 =((1+(√(1+x^2 )))/x)  and u_2 =((1−(√(1+x^2 )))/x)  ( we suppose x≠0) ⇒F(u) =((u^2 −1)/(x(u−u_1 )(x−u_2 )(u^2  +1)))  =(a/(u−u_1 )) +(b/(u−u_2 )) +((cu +d)/(u^2  +1))  a =lim_(u→u_1 ) (u−u_1 )F(u) =((u_1 ^2 −1)/(x(2((√(1+x^2 ))/x))(u_1 ^2  +1))) =((u_1 ^2 −1)/(2(√(1+x^2 ))(u_1 ^2  +1)))  b =lim_(u→u_2 ) (u−u_2 )F(u) =((u_2 ^2 −1)/(x(−2((√(1+x^2 ))/x))(u_2 ^2  +1))) =((u_2 ^2 −1)/(−2(√(1+x^2 ))(u_2 ^2  +1)))  lim_(u→+∞) uF(u) =0 =a+b +c ⇒c =−(a+b)  F(0)=(1/x) =−(a/u_1 )−(b/u_2 ) +d ⇒d =(1/x)+(a/u_1 ) +(b/u_2 ) ⇒  ∫_0 ^((√2)−1)  F(u)du =[aln∣u−u_1 ∣+bln∣u−u_2 ∣]_1 ^((√2)−1)  +[(c/2)ln(u^2  +1)+darctan(u)]_0 ^((√2)−1)   =aln∣(((√2)−1−u_1 )/(1−u_1 ))∣+bln∣(((√2)−1−u_2 )/(1−u_2 ))∣+(c/2)ln(3−2(√2)+1)+d arctan((√2)−1)}  ⇒f(x)=2aln∣(((√2)−1−u_1 )/(1−u_1 ))∣+2bln∣(((√2)−1−u_2 )/(1−u_2 ))∣+cln(4−2(√2))+(dπ/4)  a =(((((1+(√(1+x^2 )))/x))^2 −1)/(2(√(1+x^2 ))((((1+(√(1+x^2 )))/x))^2 +1))) =(((1+(√(1+x^2 )))^2 −x^2 )/(2(√(1+x^2 ))((1+(√(1+x^2 )))^2  +x^2 )))  =((1+2(√(1+x^2 ))+1+x^2 −x^2 )/(2(√(1+x^2 ))(1+2(√(1+x^2 ))+1+x^2  +x^2 ))) =(((1+(√(1+x^2 ))))/((√(1+x^2 ))(2+2(√(1+x^2 ))+2x^2 )))  =((1+(√(1+x^2 )))/(2(√(1+x^2 ))(x^2 +2(√(1+x^2 ))+1)))  rest to simplify other coefficie7ts...

1)wehavef(x)=0π4dtx+tantchangementtan(t2)=ugivef(x)=0211x+2u1u22du1+u2=20211u2(1+u2)(xxu2+2u)du=2021u21(u2+1)(xu22ux)duletdecomposeF(u)=u21(u2+1)(xu22ux)xu22ux=0Δ=1+x2u1=1+1+x2xandu2=11+x2x(wesupposex0)F(u)=u21x(uu1)(xu2)(u2+1)=auu1+buu2+cu+du2+1a=limuu1(uu1)F(u)=u121x(21+x2x)(u12+1)=u12121+x2(u12+1)b=limuu2(uu2)F(u)=u221x(21+x2x)(u22+1)=u22121+x2(u22+1)limu+uF(u)=0=a+b+cc=(a+b)F(0)=1x=au1bu2+dd=1x+au1+bu2021F(u)du=[alnuu1+blnuu2]121+[c2ln(u2+1)+darctan(u)]021=aln21u11u1+bln21u21u2+c2ln(322+1)+darctan(21)}f(x)=2aln21u11u1+2bln21u21u2+cln(422)+dπ4a=(1+1+x2x)2121+x2((1+1+x2x)2+1)=(1+1+x2)2x221+x2((1+1+x2)2+x2)=1+21+x2+1+x2x221+x2(1+21+x2+1+x2+x2)=(1+1+x2)1+x2(2+21+x2+2x2)=1+1+x221+x2(x2+21+x2+1)resttosimplifyothercoefficie7ts...

Commented by mathmax by abdo last updated on 10/Aug/19

2)we have f^′ (x)=−∫_0 ^(π/4)   (dt/((x+tant)^2 )) =−g(x) ⇒g(x)=−f^′ (x)  rest to calculate f^′ (x)  3)we have f(x)=∫_0 ^(π/4)   (dt/((x+tant))) ⇒f^((n)) (x)=∫_0 ^(π/4) (((−1)^n n!)/((x+tant)^(n+1) ))dt

2)wehavef(x)=0π4dt(x+tant)2=g(x)g(x)=f(x)resttocalculatef(x)3)wehavef(x)=0π4dt(x+tant)f(n)(x)=0π4(1)nn!(x+tant)n+1dt

Commented by mathmax by abdo last updated on 10/Aug/19

4) changement tan((t/2))=u give   ∫_0 ^(π/4)   (dt/((2+tant))) =∫_0 ^((√2)−1)   (1/(2+((2u)/(1−u^2 ))))((2du)/(1+u^2 )) =2 ∫_0 ^((√2)−1)   ((1−u^2 )/((1+u^2 )(2−2u^2  +2u)))  =2 ∫_0 ^((√2)−1)    ((u^2 −1)/((u^2  +1)(2u^2 −2u−2))) =∫_0 ^((√2)−1)   ((u^2 −1)/((u^2 −u−1)(u^2  +1)))du  let decompose F(u) =((u^2 −1)/((u^2 −u−1)(u^2  +1)))  u^2 −u−1=0→Δ =1+4 =5 ⇒u_1 =((1+(√5))/2)  and u_2 =((1−(√5))/2)  F(u)=((u^2 −1)/((u−u_1 )(u−u_2 )(u^2  +1))) =(a/(u−u_1 )) +(b/(u−u_2 )) +((cu +d)/(u^2  +1))  a =((u_1 ^2 −1)/((√5)(u_1 ^2  +1))) =(((((1+(√5))^2 )/4)−1)/((√5)( (((1+(√5))^2 )/4)+1))) =((6+2(√5)−4)/((√5)(6+2(√5)+4))) =((2+2(√5))/((√5)(10+2(√5))))  =((1+(√5))/((√5)(5+(√5)))) =((1+(√5))/(5(√5)+5)) =(1/5)  b =((u_2 ^2 −1)/(−(√5)(u_2 ^2  +1))) =(((((1−(√5))^2 )/4)−1)/((−(√5))((((1−(√5))^2 )/4)+1))) =((6−2(√5)−4)/((−(√5))(6−2(√5)+4)))  =((2−2(√5))/((−(√5))(10−2(√5)))) =((1−(√5))/((−(√5))(5−(√5)))) =(((√5)−1)/(5(√5)−5)) =(1/5)  lim_(u→+∞) uF(u)=0 =a+b+c ⇒c =−(2/5)  F(0) =1 =−(a/u_1 )−(b/u_2 ) +d ⇒d =1+(1/(5u_1 )) +(1/(5u_2 ))  =1+(1/5){((u_1 +u_2 )/(u_1 u_2 ))} =1+(1/5) (1/(−1)) =1−(1/5) =(4/5) ⇒  F(u)= (1/(5(u−u_1 ))) +(1/(5(u−u_2 ))) +((((−2)/5)u +(4/5))/(u^2  +1)) ⇒  ∫ F(u)du =(1/5)ln∣u−u_1 ∣+(1/5)ln∣u−u_2 ∣−(1/5)ln(u^2  +1)+(4/5) arctanu +c  ⇒ ∫_0 ^((√2)−1)  F(u)du=  [(1/5)ln∣u−u_1 ∣+(1/5)ln∣u−u_2 ∣−(1/5)ln(u^2  +1)+(4/5)arctan(u)]_0 ^((√2)−1)   ...rest to finish the calculus...

4)changementtan(t2)=ugive0π4dt(2+tant)=02112+2u1u22du1+u2=20211u2(1+u2)(22u2+2u)=2021u21(u2+1)(2u22u2)=021u21(u2u1)(u2+1)duletdecomposeF(u)=u21(u2u1)(u2+1)u2u1=0Δ=1+4=5u1=1+52andu2=152F(u)=u21(uu1)(uu2)(u2+1)=auu1+buu2+cu+du2+1a=u1215(u12+1)=(1+5)2415((1+5)24+1)=6+2545(6+25+4)=2+255(10+25)=1+55(5+5)=1+555+5=15b=u2215(u22+1)=(15)241(5)((15)24+1)=6254(5)(625+4)=225(5)(1025)=15(5)(55)=51555=15limu+uF(u)=0=a+b+cc=25F(0)=1=au1bu2+dd=1+15u1+15u2=1+15{u1+u2u1u2}=1+1511=115=45F(u)=15(uu1)+15(uu2)+25u+45u2+1F(u)du=15lnuu1+15lnuu215ln(u2+1)+45arctanu+c021F(u)du=[15lnuu1+15lnuu215ln(u2+1)+45arctan(u)]021...resttofinishthecalculus...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com