Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66082 by aliesam last updated on 08/Aug/19

Commented by mathmax by abdo last updated on 09/Aug/19

let I =∫_(−∞) ^(+∞)  xsin(x^3 )dx ⇒I =2∫_0 ^∞  x sin(x^3 )dx  =−2 Im(∫_0 ^∞  x e^(−ix^3 ) dx)   changement ix^3  =t give x^3  =−it  ⇒  x =(−it)^(1/3)  ⇒∫_0 ^∞  x e^(−ix^3 )  dx =∫_0 ^∞   (−it)^(1/3)  e^(−t)  (−i)^(1/3) (1/3)t^((1/3)−1)  dt  =(1/3)(−i)^(2/3)  ∫_0 ^∞   t^((2/3)−1)  e^(−t)  dt =(1/3)(e^(−((iπ)/2)) )^(2/3)  Γ((2/3))  =(1/3) e^(−((iπ)/3))  Γ((2/3)) =(1/3)Γ((2/3)){(1/2)−((√3)/2)i} =(1/6)Γ((2/3))−((Γ((2/3)))/(2(√3)))i ⇒  I =−2×(−(1/(2(√3)))Γ((2/3))) ⇒ I =((Γ((2/3)))/(√3)) .

letI=+xsin(x3)dxI=20xsin(x3)dx=2Im(0xeix3dx)changementix3=tgivex3=itx=(it)130xeix3dx=0(it)13et(i)1313t131dt=13(i)230t231etdt=13(eiπ2)23Γ(23)=13eiπ3Γ(23)=13Γ(23){1232i}=16Γ(23)Γ(23)23iI=2×(123Γ(23))I=Γ(23)3.

Commented by aliesam last updated on 09/Aug/19

god bless you

godblessyou

Commented by mathmax by abdo last updated on 09/Aug/19

you are welcome sir.

youarewelcomesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com