All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 66101 by Rio Michael last updated on 09/Aug/19
finddydxwheny=x2ln(3x)Giventhatxsinx−y2=0showthaty2=2cosx−2(dydx)2−2yd2ydx2
Commented by Prithwish sen last updated on 09/Aug/19
dydx=2xln3x+xy2=xsinx2ydydx=sinx+xcosx⇒dydx=sinx+xcosx2xsinxd2ydx2=12.y(2cosx−xsinx)−(sinx+xcosx)22yy24y3d2ydx2=2y2(2cosx−y2)−(2ydydx)22yd2ydx2=2cosx−y2−2(dydx)2proved.
Answered by GordonYeeman last updated on 09/Aug/19
dydx=2xln(3x)+x213x3=x(2ln(3x)+1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com