Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66104 by Rio Michael last updated on 09/Aug/19

f(x)= 2x^3 −x−4  show that the equation f(x) =0 has root between 1 and 2  show that the equation f(x) =0 can be written as     x = (√(((2/x) +(1/2))))  use the iteration   x_(n+1 )  = (√(((2/x_n ) +(1/2)) ,))  with x_0  = 1.385 to find to 3 decimal places the value of x_1 .

$${f}\left({x}\right)=\:\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4} \\ $$$${show}\:{that}\:{the}\:{equation}\:{f}\left({x}\right)\:=\mathrm{0}\:{has}\:{root}\:{between}\:\mathrm{1}\:{and}\:\mathrm{2} \\ $$$${show}\:{that}\:{the}\:{equation}\:{f}\left({x}\right)\:=\mathrm{0}\:{can}\:{be}\:{written}\:{as}\: \\ $$$$\:\:{x}\:=\:\sqrt{\left(\frac{\mathrm{2}}{{x}}\:+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$${use}\:{the}\:{iteration} \\ $$$$\:{x}_{{n}+\mathrm{1}\:} \:=\:\sqrt{\left(\frac{\mathrm{2}}{{x}_{{n}} }\:+\frac{\mathrm{1}}{\mathrm{2}}\right)\:,} \\ $$$${with}\:{x}_{\mathrm{0}} \:=\:\mathrm{1}.\mathrm{385}\:{to}\:{find}\:{to}\:\mathrm{3}\:{decimal}\:{places}\:{the}\:{value}\:{of}\:{x}_{\mathrm{1}} . \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 09/Aug/19

we have f(x) =2x^3 −x−4 ⇒f^′ (x)=6x^2 −1 =((√6)x−1)((√6)x+1)  f^′ (x)=0 ⇔x =+^− (1/(√6))   variation of f(x)  x         −∞                −(1/(√6))                   (1/(√6))                +∞  f^′ (x)                  +                       −                    +  f(x)         −∞     incr.  f(−(1/(√6))) decr f((1/(√6)))    incr  +∞  f is increasing on [(1/(√6)) ,+∞[  f(1) =2−1−4 =−5  f(2)=16−2−4 =10 ⇒f(1)f(2)<0 ⇒∃ α ∈]1,2[ /f(α)=0  x=(√((2/x)+(1/2)))and x>0 ⇒x^2 =((4+x)/(2x)) ⇒2x^3 =4+x ⇒2x^3 −x−4=0 ⇒  f(x)=0  so   f(x)=0 and x>0 ⇔x=(√((2/x)+(1/2)))  if we consider the iteration x_(n+1) =(√((2/x_n )+(1/2)))  we get x_1 =(√((2/x_0 )+(1/2)))=(√((4+x_0 )/(2x_0 )))=(√((4+1,385)/(2×1,385)))  rest to finish the calculus....

$${we}\:{have}\:{f}\left({x}\right)\:=\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4}\:\Rightarrow{f}^{'} \left({x}\right)=\mathrm{6}{x}^{\mathrm{2}} −\mathrm{1}\:=\left(\sqrt{\mathrm{6}}{x}−\mathrm{1}\right)\left(\sqrt{\mathrm{6}}{x}+\mathrm{1}\right) \\ $$$${f}^{'} \left({x}\right)=\mathrm{0}\:\Leftrightarrow{x}\:=\overset{−} {+}\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}\:\:\:{variation}\:{of}\:{f}\left({x}\right) \\ $$$${x}\:\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${f}\left({x}\right)\:\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:{incr}.\:\:{f}\left(−\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}\right)\:{decr}\:{f}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}\right)\:\:\:\:{incr}\:\:+\infty \\ $$$${f}\:{is}\:{increasing}\:{on}\:\left[\frac{\mathrm{1}}{\sqrt{\mathrm{6}}}\:,+\infty\left[\right.\right. \\ $$$${f}\left(\mathrm{1}\right)\:=\mathrm{2}−\mathrm{1}−\mathrm{4}\:=−\mathrm{5} \\ $$$$\left.{f}\left(\mathrm{2}\right)=\mathrm{16}−\mathrm{2}−\mathrm{4}\:=\mathrm{10}\:\Rightarrow{f}\left(\mathrm{1}\right){f}\left(\mathrm{2}\right)<\mathrm{0}\:\Rightarrow\exists\:\alpha\:\in\right]\mathrm{1},\mathrm{2}\left[\:/{f}\left(\alpha\right)=\mathrm{0}\right. \\ $$$${x}=\sqrt{\frac{\mathrm{2}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}}}{and}\:{x}>\mathrm{0}\:\Rightarrow{x}^{\mathrm{2}} =\frac{\mathrm{4}+{x}}{\mathrm{2}{x}}\:\Rightarrow\mathrm{2}{x}^{\mathrm{3}} =\mathrm{4}+{x}\:\Rightarrow\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4}=\mathrm{0}\:\Rightarrow \\ $$$${f}\left({x}\right)=\mathrm{0}\:\:{so}\:\:\:{f}\left({x}\right)=\mathrm{0}\:{and}\:{x}>\mathrm{0}\:\Leftrightarrow{x}=\sqrt{\frac{\mathrm{2}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${if}\:{we}\:{consider}\:{the}\:{iteration}\:{x}_{{n}+\mathrm{1}} =\sqrt{\frac{\mathrm{2}}{{x}_{{n}} }+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${we}\:{get}\:{x}_{\mathrm{1}} =\sqrt{\frac{\mathrm{2}}{{x}_{\mathrm{0}} }+\frac{\mathrm{1}}{\mathrm{2}}}=\sqrt{\frac{\mathrm{4}+{x}_{\mathrm{0}} }{\mathrm{2}{x}_{\mathrm{0}} }}=\sqrt{\frac{\mathrm{4}+\mathrm{1},\mathrm{385}}{\mathrm{2}×\mathrm{1},\mathrm{385}}} \\ $$$${rest}\:{to}\:{finish}\:{the}\:{calculus}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com